短文本识别说明文档

任务目标

主要目标是针对临床试验筛选标准进行分类,所有文本数据均来自于真实临床试验,短文本数据来源于中文临床试验注册网站(http://chictr.org.cn/)的临床试验公示信息中的筛选标准模块。数据公开透明,官网也提供下载链接。

任务说明

短文本分类标注以及示例如下:


image.png

评价指标

本任务的评价指标使用宏观F1值(Macro-F1,或称Average-F1)。最终排名以Macro-F1值为基准。假设我们有n个类别,C1, … …, Ci, … …, Cn。
准确率Pi = 正确预测为类别Ci的样本个数 / 预测为Ci类的样本个数。
召回率Ri = 正确预测为类别Ci的样本个数 / 真实的Ci类的样本个数。

模型介绍

image.png

试验过程

运行设备

NVIDIA-SMI 430.26 Driver Version: 430.26 CUDA Version: 10.2
GPU: Tesla P100 * 2
显存:36GB
CPU:7核 Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz
内存:120GB
硬盘:2T SSD

运行环境

Python 3.8.10
pip install ark-nlp==0.0.2
pip install scikit-learn
pip install pandas
pip install elasticsearch
pip install openpyxl
pip install python-Levenshtein

试验超参数

argg = {
'model_dir': 'data/model_data',
'model_type': 'bert',
'model_name': 'chinese-bert-wwm-ext',
'task_name': 'ctc',
'output_dir': './data/output/ctc/',
'do_train': True,
'do_predict': False,
'result_output_dir': './data/result',
'max_length': 128,
'train_batch_size': 16,
'eval_batch_size': 16,
'learning_rate': 3e-05,
'weight_decay': 0.01,
'adam_epsilon': 1e-08,
'max_grad_norm': 0.0,
'epochs': 5,
'warmup_proportion': 0.1,
'earlystop_patience': 5,
'logging_steps': 200,
'save_steps': 10,
'seed': 2021,
'device': torch.device("cuda"
if torch.cuda.is_available()
else "cpu")
}

结果介绍

epoch:5

## 结果介绍

precision: 0.8520105137135594 - recall: 0.8032168382072119 - f1 score: 0.817622871761937
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,839评论 6 482
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,543评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 153,116评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,371评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,384评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,111评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,416评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,053评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,558评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,007评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,117评论 1 334
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,756评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,324评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,315评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,539评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,578评论 2 355
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,877评论 2 345

推荐阅读更多精彩内容