SuperCT: sc-RNA-seq 单细胞细胞类型定义在线工具

单个细胞类型的识别是多细胞样品研究的基础。单细胞RNAseq技术允许对单个细胞进行高通量的表达分析,极大地提高了我们完成这项任务的能力。目前,大多数scna -seq数据分析都是采用无监督聚类方法进行的。根据丰富的marker基因,亚群通常被分配到不同的细胞类型。然而,这个过程是低效和武断的。在本研究中,我们提出了一个训练可扩展监督分类器的技术框架,以便在输入单细胞表达谱时就能显示单细胞的身份。通过使用多个scna -seq数据集,证明了该方法与传统方法相比具有较高的精度、鲁棒性、兼容性和可扩展性。我们使用两个模型升级的例子来演示如何实现单元类型分类器的预测演化。

一款在线做单细胞细胞类型定义的工具被开发出来了!

  • 只需要输入cellranger结果即可
  • 在线,操作方便
  • 基于Seurat,界面其实是一个shiny项目
  • Python环境
  • 目前只能做人和小鼠。

操作及其简单:

需要注册:
在线网站: SuperCT

上传矩阵即可:


When uploading 10xgenomics file, you need to compress the 3 files ‘genes.tsv’, ‘barcodes.tsv’ and ‘matrix.tsv’ under ‘filtered_gene_bc_matrices’.

等待:

细胞定义结果:


导出CSV:


下面是简单介绍。

SuperCT: a supervised-learning framework for enhanced characterization of single-cell transcriptomic profiles

Overview of SuperCT framework and the high concordance between the original MCA cell-type annotations and the SuperCT predictions. (A) The workflow of SuperCT training, prediction and upgrade. (B) The two upgrades that lead to the optimized or expanded SuperCT classifier. (C) The overview of TMC data original labels in comparison with SuperCT v2m predictions.

The outperformance of SuperCT over traditional UC-based methods. (A) Discordant cell labels by TMC and by SuperCT v2m predictions in spleen tissue: monocyte/macrophage versus dendritic cell. (B) The higher signal of dendritic cell signature genes suggests the SuperCT gives more convincing labels. (C) Down-sampling makes the minor cell populations lose the power to form discernable cluster but SuperCT can still characterize the cell type. (D) The separated clusters of the same cell types derived from batch difference can still be correctly characterized by SuperCT.

This single-cell RNAseq analytical tool is to characterize the cell types of heterogeneous samples using the UMI-based single-cell RNAseq data and a supervised classifier framework. 46 types can be characterized for the more recent version. More types will be included in the future. The technical details of the model and the training strategy have been put in a write-up and the manuscript will be submitted to the bioRxiv.org in a couple of days and hopefully be published in a prestigious journal soon after. You are welcome to test this tool by submitting your own UMI matrices. The cell types can be visualized based on the layout of tSNE in the Seurat style. We also provide the visualization to view the signal of the specific cell types.

This application is under continuous development by the inclusion of more and more high-quality training data sets and high-confidence cell-type labels. Your feedback on the bugs or the drawbacks will be highly appreciated. You are also encouraged to submit your curated cell types so as to make this tool better. The further collaborative effort can be discussed in person.

Advices for the dge matrix uploading:

If you upload the dge matrix, please use gene symbol ID instead of Ensemble IDs. The human genes will be like ‘CD3D’, ‘IL10’ etc. The mouse genes will be like ‘Cd3d’, ‘Il10’ etc. A typical dge.txt file will be like the following:

dge

Before uploading dge file, you are advised to do the following quality assurance. The duplicate gene names should be avoided. This is a major issue that causes trouble in Seurat pre-processing. In addition, you also need to double-check the total UMI count of each column (each cell) and the transcriptome complexity (how many genes are detected. >500 genes is preferred). Unfortunately, the dge matrix generated from high sequencing depth, such as Fluidigm C1 or Smarter-seq protocols may not work in here because our model is trained from cell-barcodes+UMI type of data.

Advices for 10xGenomics matrix uploading:

When uploading 10xgenomics file, you need to compress the 3 files ‘genes.tsv’, ‘barcodes.tsv’ and ‘matrix.tsv’ under ‘filtered_gene_bc_matrices’.

Frequently Asked Questions:

1: Why it takes so long to view result?

We are still working hard on the optimization of the system, especially exception processing. If you don’t get the result for more than 2 hours, it means the process is halted due to bugs. But we will frequently check the log, fix the bugs and resend the result before you know it.

2: Is my dataset secured?

Yes, we promise your data won't be misused or disclosed to any third party without your permission.

Any question or concern can be sent to the developer's email address: weilin.baylor@gmail.com

SuperCT
SuperCT: a supervised-learning framework for enhanced characterization of single-cell transcriptomic profiles

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,530评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,403评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,120评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,770评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,758评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,649评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,021评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,675评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,931评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,751评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,410评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,004评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,969评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,042评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,493评论 2 343

推荐阅读更多精彩内容

  • rljs by sennchi Timeline of History Part One The Cognitiv...
    sennchi阅读 7,284评论 0 10
  • **2014真题Directions:Read the following text. Choose the be...
    又是夜半惊坐起阅读 9,363评论 0 23
  • 柳丝细雨江南 红豆相思缠绵 柔情似水缱绻 谁羡 往事匆匆流连 都道花好月圆 同心结成梦断 付了痴情一片 哪堪 船远...
    那些花儿_miumiu阅读 221评论 1 2
  • 咦?是谁叫醒了小草? 原来是春姑娘在挠小草的痒痒呢! 是谁在和鱼儿玩耍? 原来是春姑娘在和鱼儿嘻戏打闹。 每当到了...
    小白画画阅读 2,307评论 57 105
  • 沙漠下暴雨 时间过得太快 快得丫我都来不及看清他长什么样 刚出考场的猖狂相拥而泣的怅然与“全体同学大后天到校拿中考...
    请对我说你好帅阅读 172评论 0 0