生信学习Day6笔记(学习R包)--立小里

学习R包

R包学习思维导图

1、安装和加载R包

  • 镜像设置
    为了加速包的下载,一般会配置一个国内镜像,可以在Rstudio的程序设置中直接选择,也可以在R的配置文件“ .Rprofile”进行添加,具体步骤如下
file.edit('~/.Rprofile')
# options函数就是设置R运行过程中的一些选项设置
options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/")) #对应清华源
options(BioC_mirror="https://mirrors.ustc.edu.cn/bioc/") #对应中科大源

最后保存=》重启Rstudio,这时你再运行一下:options()$reposoptions()$BioC_mirror 就发现已经配置好了
参考生信星球你还在每次配置Rstudio的下载镜像吗?

  • 安装R包
    R包安装命令是
    install.packages(“包”)
    或者BiocManager::install(“包”)
  • 加载R包
library(包)
require(包)
  • 例:安装加载软件
options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/")) 
options(BioC_mirror="https://mirrors.ustc.edu.cn/bioc/") 
install.packages("dplyr")
library(dplyr)

2、dplyr五个基础函数

#1.mutate(),新增列
library(dplyr)
test <- iris[c(1:2,51:52,101:102),]

mutate(test, new = Sepal.Length * Sepal.Width)

#2.select(),按列筛选
select(test,1)
select(test,c(1,5))
select(test,Sepal.Length)
select(test, Petal.Length, Petal.Width)
vars <- c("Petal.Length", "Petal.Width")
select(test, one_of(vars))

#3.filter()筛选行
filter(test, Species == "setosa")
filter(test, Species == "setosa"&Sepal.Length > 5 )
filter(test, Species %in% c("setosa","versicolor"))

#4.arrange(),按某1列或某几列对整个表格进行排序
arrange(test, Sepal.Length)#默认从小到大排序
arrange(test, desc(Sepal.Length))#用desc从大到小

#5.summarise():汇总
summarise(test, mean(Sepal.Length), sd(Sepal.Length))# 计算Sepal.Length的平均值和标准差
group_by(test, Species)
summarise(group_by(test, Species),mean(Sepal.Length), sd(Sepal.Length))

3、dplyr两个实用技能

#1:管道操作 %>% (cmd/ctr + shift + M)
test %>% 
  group_by(Species) %>% 
  summarise(mean(Sepal.Length), sd(Sepal.Length))

#2:count统计某列的unique值
count(test,Species)

4、dplyr处理关系数据

options(stringsAsFactors = F)

test1 <- data.frame(x = c('b','e','f','x'), 
                    z = c("A","B","C",'D'),
                    stringsAsFactors = F)
test1


test2 <- data.frame(x = c('a','b','c','d','e','f'), 
                    y = c(1,2,3,4,5,6),
                    stringsAsFactors = F)
test2 


inner_join(test1, test2, by = "x")

left_join(test1, test2, by = 'x')

left_join(test2, test1, by = 'x')

full_join( test1, test2, by = 'x')

semi_join(x = test1, y = test2, by = 'x')

anti_join(x = test2, y = test1, by = 'x')

test1 <- data.frame(x = c(1,2,3,4), y = c(10,20,30,40))
test1

test2 <- data.frame(x = c(5,6), y = c(50,60))
test2

test3 <- data.frame(z = c(100,200,300,400))
test3

bind_rows(test1, test2)
bind_cols(test1, test3)

详细教程见Day6-学习R包

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,530评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,403评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,120评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,770评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,758评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,649评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,021评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,675评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,931评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,751评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,410评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,004评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,969评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,042评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,493评论 2 343

推荐阅读更多精彩内容

  • 今天已经是尾随生信星球的豆豆和花花学习的第6天啦,还有一天我竟然要准备毕业了,时间过得也太快了吧!QAQ只不过跟随...
    Morning_22阅读 393评论 0 0
  • 生信第6天——学习R包。 R包是多个函数的集合,具有详细的说明和示例。 学生信,R语言必学的原因是丰富的图表和Bi...
    knightxm阅读 148评论 0 0
  • 学习R包 1、镜像设置编辑R的配置文件.Rprofile,Rstudio启动时会运行这个文件,相当于开机启动镜像配...
    李小琪_34e3阅读 156评论 0 0
  • R包学习和示例 学习R包 学习R语言最主要的目的是以后利用它的图表功能以及bioconductor中多种生信分析的...
    玉朴阅读 225评论 0 0
  • 配置Rstudio的下载镜像 -- options函数就是设置R运行过程中的一些选项设置options("repo...
    卅衣阅读 265评论 0 1