jvm误区--动态对象年龄判定

虚拟机并不是永远地要求对象的年龄必须达到了MaxTenuringThreshold才能晋升老年代,如果在Survivor空间中相同年龄所有对象大小的总和大于Survivor空间的一半,年龄大于或等于该年龄的对象就可以直接进入老年代,无须等到MaxTenuringThreshold中要求的年龄。

学习jvm的人,基本都阅读过上面这段话,这里讲的是动态年龄的判定。对于动态的判定的条件就是相同年龄所有对象大小的总和大于Survivor空间的一半,然后算出的年龄要和MaxTenuringThreshold的值进行比较,以此保证MaxTenuringThreshold设置太大(默认15),导致对象无法晋升。

问题的提出

场景假设

如果说非得相同年龄所有对象大小总和大于Survivor空间的一半才能晋升。我们看下面的场景

  1. MaxTenuringThreshold为15
  2. 年龄1的对象占用了33%
  3. 年龄2的对象占用33%
  4. 年龄3的对象占用34%。

开始推论

  1. 按照晋升的标准。首先年龄不满足MaxTenuringThreshold,不会晋升。
  2. 每个年龄的对象都不满足50%。,不会晋升。

得到假设结论

Survivor都占用了100%了,但是对象就不晋升。导致老年代明明有空间,但是对象就停留在年轻代。但这个结论似乎与jvm的表现不符合,只要老年代有空间,最后还会晋升的。

问题的解答

uint ageTable::compute_tenuring_threshold(size_t survivor_capacity) {
    //survivor_capacity是survivor空间的大小
  size_t desired_survivor_size = (size_t)((((double) survivor_capacity)*TargetSurvivorRatio)/100);
  size_t total = 0;
  uint age = 1;
  while (age < table_size) {
    total += sizes[age];//sizes数组是每个年龄段对象大小
    if (total > desired_survivor_size) break;
    age++;
  }
  uint result = age < MaxTenuringThreshold ? age : MaxTenuringThreshold;
    ...
}

我把晋升年龄计算的代码摘出。我们来看看动态年龄的计算。代码中有一个TargetSurvivorRatio的值。

-XX:TargetSurvivorRatio
目标存活率,默认为50%

  1. 通过这个比率来计算一个期望值,desired_survivor_size 。
  2. 然后用一个total计数器,累加每个年龄段对象大小的总和。
  3. 当total大于desired_survivor_size 停止。
  4. 然后用当前age和MaxTenuringThreshold 对比找出最小值作为结果

总体表征就是,年龄从小到大进行累加,当加入某个年龄段后,累加和超过survivor区域*TargetSurvivorRatio的时候,就从这个年龄段网上的年龄的对象进行晋升。

再次推演

还是上面的场景。
年龄1的占用了33%,年龄2的占用了33%,累加和超过默认的TargetSurvivorRatio(50%),年龄2和年龄3的对象都要晋升。

小结

动态对象年龄判断,主要是被TargetSurvivorRatio这个参数来控制。而且算的是年龄从小到大的累加和,而不是某个年龄段对象的大小。看完后先记住这个参数吧TargetSurvivorRatio,虽然你以后基本不会调整他。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,980评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,178评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,868评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,498评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,492评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,521评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,910评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,569评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,793评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,559评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,639评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,342评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,931评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,904评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,144评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,833评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,350评论 2 342

推荐阅读更多精彩内容