Managed Attributes
(1)Properties
A property is created by assigning the result of a built-in function to a class attribute:
attribute = property(fget, fset, fdel, doc)
class Person: # Add (object) in 2.X
def __init__(self, name):
self._name = name
def getName(self):
print('fetch...')
return self._name
def setName(self, value):
print('change...')
self._name = value
def delName(self):
print('remove...')
del self._name
name = property(getName, setName, delName, "name property docs")
bob = Person('Bob Smith') # bob has a managed attribute
print(bob.name) # Runs getName
bob.name = 'Robert Smith' # Runs setName
print(bob.name)
del bob.name # Runs delName
print('-'*20)
sue = Person('Sue Jones') # sue inherits property too
print(sue.name)
print(Person.name.__doc__) # Or help(Person.name)
Coding Properties with Decorators
class Person:
def __init__(self, name):
self._name = name
@property
def name(self): # name = property(name)
"name property docs"
print('fetch...')
return self._name
@name.setter
def name(self, value): # name = name.setter(name)
print('change...')
self._name = value
@name.deleter
def name(self): # name = name.deleter(name)
print('remove...')
del self._name
bob = Person('Bob Smith') # bob has a managed attribute
print(bob.name) # Runs name getter (name 1)
bob.name = 'Robert Smith' # Runs name setter (name 2)
print(bob.name)
del bob.name # Runs name deleter (name 3)
print('-'*20)
sue = Person('Sue Jones') # sue inherits property too
print(sue.name)
print(Person.name.__doc__) # Or help(Person.name)
(2)Descriptors
Descriptors provide an alternative way to intercept attribute access.
Descriptors are coded as separate classes and provide specially named accessor methods for the attribute access operations they wish to intercept —get, set, and deletion methods in the descriptor class are automatically run when the attribute assigned to the descriptor class instance is accessed in the corresponding way.
class Descriptor:
"docstring goes here"
def __get__(self, instance, owner): ... # Return attr value
def __set__(self, instance, value): ... # Return nothing (None)
def __delete__(self, instance): ... # Return nothing (None)
Classes with any of these methods are considered descriptors, and their methods are special when one of their instances is assigned to another class’s attribute—when the attribute is accessed, they are automatically invoked.
Unlike properties, simply omitting the __set__ method in a descriptor isn’t enough to make an attribute read-only, because the descriptor name can be assigned to an instance. In the following, the attribute assignment to X.a stores a in the instance object X, thereby hiding the descriptor stored in class C.
>>> class D:
def __get__(*args): print('get')
>>> class C:
a = D() # Attribute a is a descriptor instance
>>> X = C()
>>> X.a # Runs inherited descriptor __get__
get
>>> C.a
get
>>> X.a = 99 # Stored on X, hiding C.a!
>>> X.a
99
>>> list(X.__dict__.keys())
['a']
>>> Y = C()
>>> Y.a # Y still inherits descriptor
get
>>> C.a
get
To make a descriptor-based attribute read-only, catch the assignment in the descriptor class and raise an exception to prevent attribute assignment.
>>> class D:
def __get__(*args): print('get')
def __set__(*args): raise AttributeError('cannot set')
>>> class C:
a = D()
>>> X = C()
>>> X.a # Routed to C.a.__get__
get
>>> X.a = 99 # Routed to C.a.__set__
AttributeError: cannot set
A First Example
class Name: # Use (object) in 2.X
"name descriptor docs"
def __get__(self, instance, owner):
print('fetch...')
return instance._name
def __set__(self, instance, value):
print('change...')
instance._name = value
def __delete__(self, instance):
print('remove...')
del instance._name
class Person: # Use (object) in 2.X
def __init__(self, name):
self._name = name
name = Name() # Assign descriptor to attr
bob = Person('Bob Smith') # bob has a managed attribute
print(bob.name) # Runs Name.__get__
bob.name = 'Robert Smith' # Runs Name.__set__
print(bob.name)
del bob.name # Runs Name.__delete__
print('-'*20)
sue = Person('Sue Jones') # sue inherits descriptor too
print(sue.name)
print(Name.__doc__) # Or help(Name)
c:\code> py −3 desc-person.py
fetch...
Bob Smith
change...
fetch...
Robert Smith
remove...
--------------------
fetch...
Sue Jones
name descriptor docs
Using State Information in Descriptors
class DescState: # Use descriptor state, (object) in 2.X
def __init__(self, value):
self.value = value
def __get__(self, instance, owner): # On attr fetch
print('DescState get')
return self.value * 10
def __set__(self, instance, value): # On attr assign
print('DescState set')
self.value = value
# Client class
class CalcAttrs:
X = DescState(2) # Descriptor class attr
Y = 3 # Class attr
def __init__(self):
self.Z = 4 # Instance attr
obj = CalcAttrs()
print(obj.X, obj.Y, obj.Z) # X is computed, others are not
obj.X = 5 # X assignment is intercepted
CalcAttrs.Y = 6 # Y reassigned in class
obj.Z = 7 # Z assigned in instance
print(obj.X, obj.Y, obj.Z)
obj2 = CalcAttrs() # But X uses shared data, like Y!
print(obj2.X, obj2.Y, obj2.Z)
c:\code> py .3 desc-state-desc.py
DescState get
20 3 4
DescState set
DescState get
50 6 7
DescState get
50 6 4
>>> class DescBoth:
def __init__(self, data):
self.data = data
def __get__(self, instance, owner):
return '%s, %s' % (self.data, instance.data)
def __set__(self, instance, value):
instance.data = value
>>> class Client:
def __init__(self, data):
self.data = data
managed = DescBoth('spam')
>>> I = Client('eggs')
>>> I.managed # Show both data sources
'spam, eggs'
>>> I.managed = 'SPAM' # Change instance data
>>> I.managed
'spam, SPAM'
>>> I.__dict__
{'data': 'SPAM'}
>>> [x for x in dir(I) if not x.startswith('__')]
['data', 'managed']
>>> getattr(I, 'data')
'SPAM'
>>> getattr(I, 'managed')
'spam, SPAM'
>>> for attr in (x for x in dir(I) if not x.startswith('__')):
print('%s => %s' % (attr, getattr(I, attr)))
data => SPAM
managed => spam, SPAM
(3)__getattr__ and __getattribute__
- __getattr__ is run for undefined attributes—because it is run only for attributes not stored on an instance or inherited from one of its classes, its use is straightforward.
- __getattribute__ is run for every attribute—because it is all-inclusive, you must be cautious when using this method to avoid recursive loops by passing attribute accesses to a superclass.
Unlike properties and descriptors, these methods are part of Python’s general operator overloading protocol—specially named methods of a class, inherited by subclasses, and run automatically when instances are used in the implied built-in operation.
The __getattr__ and __getattribute__ methods are also more generic than properties and descriptors—they can be used to intercept access to any (or even all) instance attribute fetches, not just a single specific name. Because of this, these two methods are well suited to general delegation-based coding patterns.
The Basics
def __getattr__(self, name): # On undefined attribute fetch [obj.name]
def __getattribute__(self, name): # On all attribute fetch [obj.name]
def __setattr__(self, name, value): # On all attribute assignment [obj.name=value]
def __delattr__(self, name): # On all attribute deletion [del obj.name]
class Catcher:
def __getattr__(self, name):
print('Get: %s' % name)
def __setattr__(self, name, value):
print('Set: %s %s' % (name, value))
X = Catcher()
X.job # Prints "Get: job"
X.pay # Prints "Get: pay"
X.pay = 99 # Prints "Set: pay 99"
class Wrapper:
def __init__(self, object):
self.wrapped = object # Save object
def __getattr__(self, attrname):
print('Trace: ' + attrname) # Trace fetch
return getattr(self.wrapped, attrname) # Delegate fetch
X = Wrapper([1, 2, 3])
X.append(4) # Prints "Trace: append"
print(X.wrapped) # Prints "[1, 2, 3, 4]"
Avoiding loops in attribute interception methods
These methods are generally straightforward to use; their only substantially complex aspect is the potential for looping (a.k.a. recursing).
The code will usually loop until memory is exhausted.
def __getattribute__(self, name):
x = self.other # LOOPS!
To avoid this loop, route the fetch through a higher superclass instead to skip this level’s version—because the object class is always a new-style superclass, it serves well in this role.
def __getattribute__(self, name):
x = object.__getattribute__(self, 'other') # Force higher to avoid me
def __setattr__(self, name, value):
object.__setattr__(self, 'other', value) # Force higher to avoid me
A First Example
class Person: # Portable: 2.X or 3.X
def __init__(self, name): # On [Person()]
self._name = name # Triggers __setattr__!
def __getattr__(self, attr): # On [obj.undefined]
print('get: ' + attr)
if attr == 'name': # Intercept name: not stored
return self._name # Does not loop: real attr
else: # Others are errors
raise AttributeError(attr)
def __setattr__(self, attr, value): # On [obj.any = value]
print('set: ' + attr)
if attr == 'name':
attr = '_name' # Set internal name
self.__dict__[attr] = value # Avoid looping here
def __delattr__(self, attr): # On [del obj.any]
print('del: ' + attr)
if attr == 'name':
attr = '_name' # Avoid looping here too
del self.__dict__[attr] # but much less common
bob = Person('Bob Smith') # bob has a managed attribute
print(bob.name) # Runs __getattr__
bob.name = 'Robert Smith' # Runs __setattr__
print(bob.name)
del bob.name # Runs __delattr__
print('-'*20)
sue = Person('Sue Jones') # sue inherits property too
print(sue.name)
#print(Person.name.__doc__) # No equivalent here
c:\code> py −3 getattr-person.py
set: _name
get: name
Bob Smith
set: name
get: name
Robert Smith
del: name
--------------------
set: _name
get: name
Sue Jones
class Person: # Portable: 2.X or 3.X
def __init__(self, name): # On [Person()]
self._name = name # Triggers __setattr__!
def __getattribute__(self, attr): # On [obj.any]
print('get: ' + attr)
if attr == 'name': # Intercept all names
attr = '_name' # Map to internal name
return object.__getattribute__(self, attr) # Avoid looping here
def __setattr__(self, attr, value): # On [obj.any = value]
print('set: ' + attr)
if attr == 'name':
attr = '_name' # Set internal name
self.__dict__[attr] = value # Avoid looping here
def __delattr__(self, attr): # On [del obj.any]
print('del: ' + attr)
if attr == 'name':
attr = '_name' # Avoid looping here too
del self.__dict__[attr] # but much less common
bob = Person('Bob Smith') # bob has a managed attribute
print(bob.name) # Runs __getattr__
bob.name = 'Robert Smith' # Runs __setattr__
print(bob.name)
del bob.name # Runs __delattr__
print('-'*20)
sue = Person('Sue Jones') # sue inherits property too
print(sue.name)
#print(Person.name.__doc__) # No equivalent here
c:\code> py −3 getattribute-person.py
set: _name
get: __dict__
get: name
Bob Smith
set: name
get: __dict__
get: name
Robert Smith
del: name
get: __dict__
--------------------
set: _name
get: __dict__
get: name
Sue Jones
__getattr__ and __getattribute__ Compared
class GetAttr:
attr1 = 1
def __init__(self):
self.attr2 = 2
def __getattr__(self, attr): # On undefined attrs only
print('get: ' + attr) # Not on attr1: inherited from class
if attr == 'attr3': # Not on attr2: stored on instance
return 3
else:
raise AttributeError(attr)
X = GetAttr()
print(X.attr1)
print(X.attr2)
print(X.attr3)
print('-'*20)
class GetAttribute(object): # (object) needed in 2.X only
attr1 = 1
def __init__(self):
self.attr2 = 2
def __getattribute__(self, attr): # On all attr fetches
print('get: ' + attr) # Use superclass to avoid looping here
if attr == 'attr3':
return 3
else:
return object.__getattribute__(self, attr)
X = GetAttribute()
print(X.attr1)
print(X.attr2)
print(X.attr3)
c:\code> py −3 getattr-v-getattr.py
1
2
get: attr3
3
--------------------
get: attr1
1
get: attr2
2
get: attr3
3
Intercepting Built-in Operation Attributes
class GetAttr:
eggs = 88 # eggs stored on class, spam on instance
def __init__(self):
self.spam = 77
def __len__(self): # len here, else __getattr__ called with __len__
print('__len__: 42')
return 42
def __getattr__(self, attr): # Provide __str__ if asked, else dummy func
print('getattr: ' + attr)
if attr == '__str__':
return lambda *args: '[Getattr str]'
else:
return lambda *args: None
class GetAttribute(object): # object required in 2.X, implied in 3.X
eggs = 88 # In 2.X all are isinstance(object) auto
def __init__(self): # But must derive to get new-style tools,
self.spam = 77 # incl __getattribute__, some __X__ defaults
def __len__(self):
print('__len__: 42')
return 42
def __getattribute__(self, attr):
print('getattribute: ' + attr)
if attr == '__str__':
return lambda *args: '[GetAttribute str]'
else:
return lambda *args: None
for Class in GetAttr, GetAttribute:
print('\n' + Class.__name__.ljust(50, '='))
X = Class()
X.eggs # Class attr
X.spam # Instance attr
X.other # Missing attr
len(X) # __len__ defined explicitly
# New-styles must support [], +, call directly: redefine
try: X[0] # __getitem__?
except: print('fail []')
try: X + 99 # __add__?
except: print('fail +')
try: X() # __call__? (implicit via built-in)
except: print('fail ()')
X.__call__() # __call__? (explicit, not inherited)
print(X.__str__()) # __str__? (explicit, inherited from type)
print(X) # __str__? (implicit via built-in)
c:\code> py −2 getattr-builtins.py
GetAttr===========================================
getattr: other
__len__: 42
getattr: __getitem__
getattr: __coerce__
getattr: __add__
getattr: __call__
getattr: __call__
getattr: __str__
[Getattr str]
getattr: __str__
[Getattr str]
GetAttribute======================================
getattribute: eggs
getattribute: spam
getattribute: other
__len__: 42
fail []
fail +
fail ()
getattribute: __call__
getattribute: __str__
[GetAttribute str]
<__main__.GetAttribute object at 0x02287898>
c:\code> py −3 getattr-builtins.py
GetAttr===========================================
getattr: other
__len__: 42
fail []
fail +
fail ()
getattr: __call__
<__main__.GetAttr object at 0x02987CC0>
<__main__.GetAttr object at 0x02987CC0>
GetAttribute======================================
getattribute: eggs
getattribute: spam
getattribute: other
__len__: 42
fail []
fail +
fail ()
getattribute: __call__
getattribute: __str__
[GetAttribute str]
<__main__.GetAttribute object at 0x02987CF8>
Delegation-based managers revisited
class Person:
def __init__(self, name, job=None, pay=0):
self.name = name
self.job = job
self.pay = pay
def lastName(self):
return self.name.split()[-1]
def giveRaise(self, percent):
self.pay = int(self.pay * (1 + percent))
def __repr__(self):
return '[Person: %s, %s]' % (self.name, self.pay)
class Manager:
def __init__(self, name, pay):
self.person = Person(name, 'mgr', pay) # Embed a Person object
def giveRaise(self, percent, bonus=.10):
self.person.giveRaise(percent + bonus) # Intercept and delegate
# def __getattr__(self, attr):
# return getattr(self.person, attr) # Delegate all other attrs
## def __repr__(self):
## return str(self.person) # Must overload again (in 3.X)
def __getattribute__(self, attr):
print('**', attr)
if attr in ['person', 'giveRaise']:
return object.__getattribute__(self, attr) # Fetch my attrs
else:
return getattr(self.person, attr) # Delegate all others
if __name__ == '__main__':
sue = Person('Sue Jones', job='dev', pay=100000)
print(sue.lastName())
sue.giveRaise(.10)
print(sue)
tom = Manager('Tom Jones', 50000) # Manager.__init__
print(tom.lastName()) # Manager.__getattr__ -> Person.lastName
tom.giveRaise(.10) # Manager.giveRaise -> Person.giveRaise
print(tom) # Manager.__repr__ -> Person.__repr__
C:\code> py −3 getattr-delegate.py
Jones
[Person: Sue Jones, 110000]
** lastName
** person
Jones
** giveRaise
** person
<__main__.Manager object at 0x028E0590>
(4)Example: Attribute Validations
# File validate_getattr.py
class CardHolder:
acctlen = 8 # Class data
retireage = 59.5
def __init__(self, acct, name, age, addr):
self.acct = acct # Instance data
self.name = name # These trigger __setattr__ too
self.age = age # _acct not mangled: name tested
self.addr = addr # addr is not managed
# remain has no data
def __getattr__(self, name):
if name == 'acct': # On undefined attr fetches
return self._acct[:-3] + '***' # name, age, addr are defined
elif name == 'remain':
return self.retireage - self.age # Doesn't trigger __getattr__
else:
raise AttributeError(name)
def __setattr__(self, name, value):
if name == 'name': # On all attr assignments
value = value.lower().replace(' ', '_') # addr stored directly
elif name == 'age': # acct mangled to _acct
if value < 0 or value > 150:
raise ValueError('invalid age')
elif name == 'acct':
name = '_acct'
value = value.replace('-', '')
if len(value) != self.acctlen:
raise TypeError('invald acct number')
elif name == 'remain':
raise TypeError('cannot set remain')
self.__dict__[name] = value # Avoid looping (or via object)
# File validate_getattribute.py
class CardHolder(object): # Need "(object)" in 2.X only
acctlen = 8 # Class data
retireage = 59.5
def __init__(self, acct, name, age, addr):
self.acct = acct # Instance data
self.name = name # These trigger __setattr__ too
self.age = age # acct not mangled: name tested
self.addr = addr # addr is not managed
# remain has no data
def __getattribute__(self, name):
superget = object.__getattribute__ # Don't loop: one level up
if name == 'acct': # On all attr fetches
return superget(self, 'acct')[:-3] + '***'
elif name == 'remain':
return superget(self, 'retireage') - superget(self, 'age')
else:
return superget(self, name) # name, age, addr: stored
def __setattr__(self, name, value):
if name == 'name': # On all attr assignments
value = value.lower().replace(' ', '_') # addr stored directly
elif name == 'age':
if value < 0 or value > 150:
raise ValueError('invalid age')
elif name == 'acct':
value = value.replace('-', '')
if len(value) != self.acctlen:
raise TypeError('invald acct number')
elif name == 'remain':
raise TypeError('cannot set remain')
self.__dict__[name] = value # Avoid loops, orig names
Decorators(装饰器)
(1)The Basics
Function Decorators
In terms of code, function decorators automatically map the following syntax.
def F(arg):
...
F = decorator(F) # Rebind function name to decorator result
F(99) # Essentially calls decorator(F)(99)
Implementation
A decorator itself is a callable that returns a callable.
def decorator(F): # On @ decoration
def wrapper(*args): # On wrapped function call
# Use F and args
# F(*args) calls original function
return wrapper
@decorator # func = decorator(func)
def func(x, y): # func is passed to decorator's F
...
func(6, 7) # 6, 7 are passed to wrapper's *args
To do the same with classes, we can overload the call operation and use instance attributes instead of enclosing scopes.
class decorator:
def __init__(self, func): # On @ decoration
self.func = func
def __call__(self, *args): # On wrapped function call
# Use self.func and args
# self.func(*args) calls original function
@decorator
def func(x, y): # func = decorator(func)
... # func is passed to __init__
func(6, 7) # 6, 7 are passed to __call__'s *args
Decorator Nesting
@A
@B
@C
def f(...):
...
runs the same as the following
def f(...):
...
f = A(B(C(f)))
def d1(F): return lambda: 'X' + F()
def d2(F): return lambda: 'Y' + F()
def d3(F): return lambda: 'Z' + F()
@d1
@d2
@d3
def func(): # func = d1(d2(d3(func)))
return 'spam'
print(func()) # Prints "XYZspam"
Decorator Arguments
def decorator(A, B):
# Save or use A, B
def actualDecorator(F):
# Save or use function F
# Return a callable: nested def, class with __call__, etc.
return callable
return actualDecorator
(2)Coding Function Decorators
Tracing Calls
# File decorator1.py
class tracer:
def __init__(self, func): # On @ decoration: save original func
self.calls = 0
self.func = func
def __call__(self, *args): # On later calls: run original func
self.calls += 1
print('call %s to %s' % (self.calls, self.func.__name__))
self.func(*args)
@tracer
def spam(a, b, c): # spam = tracer(spam)
print(a + b + c) # Wraps spam in a decorator object
>>> from decorator1 import spam
>>> spam(1, 2, 3) # Really calls the tracer wrapper object
call 1 to spam
6
>>> spam('a', 'b', 'c') # Invokes __call__ in class
call 2 to spam
abc
>>> spam.calls # Number calls in wrapper state information
2
>>> spam
<decorator1.tracer object at 0x02D9A730>
Enclosing scopes and nonlocals
def tracer(func): # State via enclosing scope and nonlocal
calls = 0 # Instead of class attrs or global
def wrapper(*args, **kwargs): # calls is per-function, not global
nonlocal calls
calls += 1
print('call %s to %s' % (calls, func.__name__))
return func(*args, **kwargs)
return wrapper
@tracer
def spam(a, b, c): # Same as: spam = tracer(spam)
print(a + b + c)
@tracer
def eggs(x, y): # Same as: eggs = tracer(eggs)
print(x ** y)
spam(1, 2, 3) # Really calls wrapper, bound to func
spam(a=4, b=5, c=6) # wrapper calls spam
eggs(2, 16) # Really calls wrapper, bound to eggs
eggs(4, y=4) # Nonlocal calls _is_ per-decoration here
c:\code> py −3 decorator4.py
call 1 to spam
6
call 2 to spam
15
call 1 to eggs
65536
call 2 to eggs
256
Coding
Class Blunders I: Decorating Methods
class tracer:
def __init__(self, func): # On @ decoration: save original func
self.calls = 0
self.func = func
def __call__(self, *args): # On later calls: run original func
self.calls += 1
print('call %s to %s' % (self.calls, self.func.__name__))
self.func(*args)
class Person:
def __init__(self, name, pay):
self.name = name
self.pay = pay
@tracer
def giveRaise(self, percent): # giveRaise = tracer(giveRaise)
self.pay *= (1.0 + percent)
@tracer
def lastName(self): # lastName = tracer(lastName)
return self.name.split()[-1]
>>> bob = Person('Bob Smith', 50000) # tracer remembers method funcs
>>> bob.giveRaise(.25) # Runs tracer.__call__(???, .25)
call 1 to giveRaise
TypeError: giveRaise() missing 1 required positional argument: 'percent'
>>> print(bob.lastName()) # Runs tracer.__call__(???)
call 1 to lastName
TypeError: lastName() missing 1 required positional argument: 'self'
>>> bob.giveRaise(.25)
<__main__.tracer object at 0x02A486D8> (0.25,) {}
call 1 to giveRaise
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 9, in __call__
TypeError: giveRaise() missing 1 required positional argument: 'percent'
This happens because Python passes the implied subject instance to self when a method name is bound to a simple function only; when it is an instance of a callable class, that class’s instance is passed instead.
Using nested functions to decorate methods
If you want your function decorators to work on both simple functions and class-level methods, the most straightforward solution lies in using one of the other state retention solutions described earlier—code your function decorator as nested defs, so that you don’t depend on a single self instance argument to be both the wrapper class instance and the subject class instance.
Using descriptors to decorate methods
Consider the following alternative tracing decorator, which also happens to be a descriptor when used for a class-level method
class tracer(object): # A decorator+descriptor
def __init__(self, func): # On @ decorator
self.calls = 0 # Save func for later call
self.func = func
def __call__(self, *args, **kwargs): # On call to original func
self.calls += 1
print('call %s to %s' % (self.calls, self.func.__name__))
return self.func(*args, **kwargs)
def __get__(self, instance, owner): # On method attribute fetch
return wrapper(self, instance)
class wrapper:
def __init__(self, desc, subj): # Save both instances
self.desc = desc # Route calls back to deco/desc
self.subj = subj
def __call__(self, *args, **kwargs):
return self.desc(self.subj, *args, **kwargs) # Runs tracer.__call__
@tracer
def spam(a, b, c): # spam = tracer(spam)
...same as prior... # Uses __call__ only
class Person:
@tracer
def giveRaise(self, percent): # giveRaise = tracer(giveRaise)
...same as prior... # Makes giveRaise a descriptor
sue.giveRaise(.10) # Runs __get__ then __call__
Timing Calls
# File timer-deco1.py
# Caveat: range still differs - a list in 2.X, an iterable in 3.X
# Caveat: timer won't work on methods as coded (see quiz solution)
import time, sys
force = list if sys.version_info[0] == 3 else (lambda X: X)
class timer:
def __init__(self, func):
self.func = func
self.alltime = 0
def __call__(self, *args, **kargs):
start = time.clock()
result = self.func(*args, **kargs)
elapsed = time.clock() - start
self.alltime += elapsed
print('%s: %.5f, %.5f' % (self.func.__name__, elapsed, self.alltime))
return result
@timer
def listcomp(N):
return [x * 2 for x in range(N)]
@timer
def mapcall(N):
return force(map((lambda x: x * 2), range(N)))
result = listcomp(5) # Time for this call, all calls, return value
listcomp(50000)
listcomp(500000)
listcomp(1000000)
print(result)
print('allTime = %s' % listcomp.alltime) # Total time for all listcomp calls
print('')
result = mapcall(5)
mapcall(50000)
mapcall(500000)
mapcall(1000000)
print(result)
print('allTime = %s' % mapcall.alltime) # Total time for all mapcall calls
print('\n**map/comp = %s' % round(mapcall.alltime / listcomp.alltime, 3))
c:\code> py −3 timerdeco1.py
listcomp: 0.00001, 0.00001
listcomp: 0.00499, 0.00499
listcomp: 0.05716, 0.06215
listcomp: 0.11565, 0.17781
[0, 2, 4, 6, 8]
allTime = 0.17780527629411225
mapcall: 0.00002, 0.00002
mapcall: 0.00988, 0.00990
mapcall: 0.10601, 0.11591
mapcall: 0.21690, 0.33281
[0, 2, 4, 6, 8]
allTime = 0.3328064956447921
**map/comp = 1.872
Adding Decorator Arguments
A label, for instance, might be added as follows.
def timer(label=''):
def decorator(func):
def onCall(*args): # Multilevel state retention:
... # args passed to function
func(*args) # func retained in enclosing scope
print(label, ... # label retained in enclosing scope
return onCall
return decorator # Returns the actual decorator
@timer('==>') # Like listcomp = timer('==>')(listcomp)
def listcomp(N): ... # listcomp is rebound to new onCall
listcomp(...) # Really calls onCall
import time
def timer(label='', trace=True): # On decorator args: retain args
class Timer:
def __init__(self, func): # On @: retain decorated func
self.func = func
self.alltime = 0
def __call__(self, *args, **kargs): # On calls: call original
start = time.clock()
result = self.func(*args, **kargs)
elapsed = time.clock() - start
self.alltime += elapsed
if trace:
format = '%s %s: %.5f, %.5f'
values = (label, self.func.__name__, elapsed, self.alltime)
print(format % values)
return result
return Timer
>>> from timerdeco2 import timer
>>> @timer(trace=False) # No tracing, collect total time
... def listcomp(N):
... return [x * 2 for x in range(N)]
...
>>> x = listcomp(5000)
>>> x = listcomp(5000)
>>> x = listcomp(5000)
>>> listcomp.alltime
0.0037191417530599152
(3)Coding Class Decorators
Singleton Classes
"""
# 3.X and 2.X: global table
instances = {}
def singleton(aClass): # On @ decoration
def onCall(*args, **kwargs): # On instance creation
if aClass not in instances: # One dict entry per class
instances[aClass] = aClass(*args, **kwargs)
return instances[aClass]
return onCall
"""
##################################################################################
"""
# 3.X only: nonlocal
def singleton(aClass): # On @ decoration
instance = None
def onCall(*args, **kwargs): # On instance creation
nonlocal instance # 3.X and later nonlocal
if instance == None:
instance = aClass(*args, **kwargs) # One scope per class
return instance
return onCall
"""
#################################################################################
"""
# 3.X and 2.X: func attrs
def singleton(aClass): # On @ decoration
def onCall(*args, **kwargs): # On instance creation
if onCall.instance == None:
onCall.instance = aClass(*args, **kwargs) # One function per class
return onCall.instance
onCall.instance = None
return onCall
"""
##################################################################################
# 3.X and 2.X: classes
class singleton:
def __init__(self, aClass): # On @ decoration
self.aClass = aClass
self.instance = None
def __call__(self, *args, **kwargs): # On instance creation
if self.instance == None:
self.instance = self.aClass(*args, **kwargs) # One instance per class
return self.instance
##################################################################################
# test code
@singleton # Person = singleton(Person)
class Person: # Rebinds Person to onCall
def __init__(self, name, hours, rate): # onCall remembers Person
self.name = name
self.hours = hours
self.rate = rate
def pay(self):
return self.hours * self.rate
@singleton # Spam = singleton(Spam)
class Spam: # Rebinds Spam to onCall
def __init__(self, val): # onCall remembers Spam
self.attr = val
bob = Person('Bob', 40, 10) # Really calls onCall
print(bob.name, bob.pay())
sue = Person('Sue', 50, 20) # Same, single object
print(sue.name, sue.pay())
X = Spam(val=42) # One Person, one Spam
Y = Spam(99)
print(X.attr, Y.attr)
Tracing interfaces with class decorators
def Tracer(aClass): # On @ decorator
class Wrapper:
def __init__(self, *args, **kargs): # On instance creation
self.fetches = 0
self.wrapped = aClass(*args, **kargs) # Use enclosing scope name
def __getattr__(self, attrname):
print('Trace: ' + attrname) # Catches all but own attrs
self.fetches += 1
return getattr(self.wrapped, attrname) # Delegate to wrapped obj
return Wrapper
if __name__ == '__main__':
@Tracer
class Spam: # Spam = Tracer(Spam)
def display(self): # Spam is rebound to Wrapper
print('Spam!' * 8)
@Tracer
class Person: # Person = Tracer(Person)
def __init__(self, name, hours, rate): # Wrapper remembers Person
self.name = name
self.hours = hours
self.rate = rate
def pay(self): # Accesses outside class traced
return self.hours * self.rate # In-method accesses not traced
food = Spam() # Triggers Wrapper()
food.display() # Triggers __getattr__
print([food.fetches])
bob = Person('Bob', 40, 50) # bob is really a Wrapper
print(bob.name) # Wrapper embeds a Person
print(bob.pay())
print('')
sue = Person('Sue', rate=100, hours=60) # sue is a different Wrapper
print(sue.name) # with a different Person
print(sue.pay())
print(bob.name) # bob has different state
print(bob.pay())
print([bob.fetches, sue.fetches]) # Wrapper attrs not traced
c:\code> python interfacetracer.py
Trace: display
Spam!Spam!Spam!Spam!Spam!Spam!Spam!Spam!
[1]
Trace: name
Bob
Trace: pay
2000
Trace: name
Sue
Trace: pay
6000
Trace: name
Bob
Trace: pay
2000
[4, 2]
>>> from interfacetracer import Tracer
>>> @Tracer
... class MyList(list): pass # MyList = Tracer(MyList)
>>> x = MyList([1, 2, 3]) # Triggers Wrapper()
>>> x.append(4) # Triggers __getattr__, append
Trace: append
>>> x.wrapped
[1, 2, 3, 4]
>>> WrapList = Tracer(list) # Or perform decoration manually
>>> x = WrapList([4, 5, 6]) # Else subclass statement required
>>> x.append(7)
Trace: append
>>> x.wrapped
[4, 5, 6, 7]
Metaclasses
(1)To Metaclass or Not to Metaclass
Just like decorators, though, metaclasses:
- Provide a more formal and explicit structure
- Help ensure that application programmers won’t forget to augment their classes according to an API’s requirements
- Avoid code redundancy and its associated maintenance costs by factoring class customization logic into a single location, the metaclass