似然比检验 (LR test)

计量中检验的一般套路是以 p-value 显著、拒绝原假设为理想情况,然而总有几个检验的假设是不按套路出牌的。Hansen 检验算一个,LR 检验算第二个。

Stata 应用

LR 检验可用于模型的比较和选择,用法与 Hausman 检验相似:
reg ... (model 1)
est store m1
reg ... (model 2)
lrtest m1 .
配合 AIC 和 BIC 信息指标使用:
lrtest m1 . ,stats

lrtest

如何理解 Stata 汇报的结果?

回到检验本身,似然比是有约束条件下的似然函数最大值与无约束条件下似然函数最大值之比。因此,似然比检验的实质是比较有约束条件下的似然函数最大值与无约束条件下似然函数最大值。

似然比检验的思想是:如果参数约束是有效的,那么加上这样的约束不应该引起似然函数最大值的大幅度降低。因此:

H0:参数约束有效,有约束模型优于无约束模型。
H1:参数约束无效,无约束模型优于有约束模型。
划重点:不拒绝 H0 表明有约束模型更优。

约束模型与无约束模型是相对而言的,变量越少的模型受到的约束更多(βi=0),变量最多的模型才是无约束模型

Stata 会自动识别哪个是约束模型,在检验结果第一行列出:ModelA nested in ModelB 。nested 意为嵌套,A 嵌套在 B 中,就是说 A 是约束模型,B 是无约束模型。

在截图的例子中,LR 具有统计显著性,因此拒绝原假设,选择无约束模型,即 gsem1。

注意,一般情况下,约束模型的 AIC 是小于无约束模型的。此处顺便补充一句,AIC 信息的判断标准是 " the smaller the better ",不关心绝对值,只关心相对值。因此,一个负的绝对值大的 AIC 是好于正的绝对值小的 AIC 的。

A good reference is Model Selection and Multi-model Inference: A Practical Information-theoretic Approach (Burnham and Anderson, 2004), particularly on page 62 (section 2.2):
" In application, one computes AIC for each of the candidate models and selects the model with the smallest value of AIC."
as well as on page 63:
" Usually, AIC is positive; however, it can be shifted by any additive constant, and some shifts can result in negative values of AIC. [...] It is not the absolute size of the AIC value, it is the relative values over the set of models considered, and particularly the differences between AIC values, that are important."
Source: https://stats.stackexchange.com/questions/84076/negative-values-for-aic-in-general-mixed-model

既然通常情况下,约束模型的 AIC 总是小于无约束模型的,那么凭借 AIC 信息就无法对两个模型进行有效的比较。这就显现出 LR 的价值:在 AIC 提供的信息不充分的情况下,如何比较有约束模型和无约束模型的优劣?LR 检验指出,如果参数约束有效,那么加上这样的约束不会引起似然函数最大值的大幅度降低。

模型(Refer:半碗鱼

变量X=(X_{1},……,X_{n})服从的分布里有未知参数\theta,记其概率密度函数为f(x),联合概率密度函数为p(x;\theta)

原假设H_{0}是对参数\theta的假设,比如\theta=\theta_{0}
备择假设H_{1}:\theta=\theta_{1}(\theta_{1}≠\theta_{0})
若参数有多种可能的取值,则假设H_{0}:\theta∈\Theta_{0},备择假设H_{1}:\theta∈\Theta_{1},其中\Theta_{0},\Theta_{1}表示集合。
从假设可以看出,似然比检验(或概率比检验)这种推断常用于区分样本来自这类分布还是那类分布的参数检验问题。

我们知道,似然函数Ln个独立样本的联合概率密度函数,就是出现n个样本为向量X的概率,就是f(x)的连乘。因此有L(\theta;x)=kp(x;\theta),通常取k=1

H_{0}成立时的似然函数为L_{0}。它是原假设成立时,观察到样本点x的可能性的一个度量(似然),即n次取样的结果为向量X的概率。
若参数有多种可能的取值(即假设为集合的情况H_{0}:\theta∈\Theta_{0}),就用广义似然函数sup L_{0}(用\theta的极大似然估计\theta^{*}代入计算可得)。

同理,记H_{1}成立时的似然函数为L_{1}(或广义似然函数sup L_{1})。它是在H_{1}成立的条件下,n次取样的结果为向量X的概率。

定义\lambda(x)=\frac{L_{1}}{L_{0}}=\frac{p(x;\theta_{1})}{p(x;\theta_{0})}为似然比。

显然,\lambda(x)越大,备择假设成立观察到样本点x的可能性越高,拒绝H_{0}的概率越高。换句话说,样本 在H_{1}条件下出现的概率 比 在H_{0}条件下出现的概率 的比值越大,H_{1}成立的可能性越高。

因此,我们设定临界值c,当似然比\lambda(x)≥c时,我们就拒绝H_{0}。临界值c由似然比函数(往往是关于某个可知道分布的统计量T(X)的单调函数)结合给定的显著性水平值就能确定。

Ref:
数理统计学习笔记:极大似然估计
数理统计学习笔记:似然比检验

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,132评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,802评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,566评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,858评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,867评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,695评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,064评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,705评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,915评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,677评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,796评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,432评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,041评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,992评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,223评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,185评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,535评论 2 343