项目简介
- 今天到现在为止实战课程的访问量
- 今天到现在为止从搜索引擎引流过来的实战课程的访问量
项目流程
需求分析 ==> 数据产生 ==> 数据采集 ==> 数据清洗 ==> 数据统计分析 ==> 统计结果入库 ==> 数据可视化
分布式日志收集框架Flume(印象笔记)
Flume is a distributed, reliable, and available service for efficiently collecting, aggregating, and moving large amounts of log data. It has a simple and flexible(灵活的) architecture(架构) based on streaming data flows. It is robust(健壮) and fault tolerant with tunable reliability mechanisms and many failover and recovery mechanisms. It uses a simple extensible data model that allows for online analytic application.
分布式流处理平台kafka
一个配置文件一个broker
单节点单broker,不用修改配置文件
单节点多broker,复制多份配置文件,broker.id,listeners端口号,log.dirs路径唯一
IDEA+Maven编程开发
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>${scala.version}</version>
</dependency>
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka_2.11</artifactId>
<version>${kafka.version}</version>
</dependency>
package com.test.kafka;
public class KafkaProperties {
public static final String ZK = "192.168.247.100:2181";
public static final String TOPIC = "test_repliation_3";
public static final String BROKER_LIST = "192.168.247.100:9092,192.168.247.100:9093,192.168.247.100:9094";
public static final String GROUP_ID = "testGroup";
}
package com.test.kafka;
import kafka.consumer.Consumer;
import kafka.consumer.ConsumerConfig;
import kafka.consumer.ConsumerIterator;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;
public class KafkaConsumer extends Thread {
private String topic;
public KafkaConsumer(String topic){
this.topic = topic;
}
private ConsumerConnector createConnctor(){
Properties properties = new Properties();
properties.put("zookeeper.connect",KafkaProperties.ZK);
properties.put("group.id",KafkaProperties.GROUP_ID);
return Consumer.createJavaConsumerConnector(new ConsumerConfig(properties));
}
@Override
public void run() {
ConsumerConnector consumer = createConnctor();
Map<String,Integer> topicCountMap = new HashMap<String,Integer>();
topicCountMap.put(topic,1);
//String :topic
//List: 数据流
Map<String, List<KafkaStream<byte[], byte[]>>> messageStreams = consumer.createMessageStreams(topicCountMap);
KafkaStream<byte[], byte[]> stream = messageStreams.get(topic).get(0);
ConsumerIterator<byte[], byte[]> iterator = stream.iterator();
while(iterator.hasNext()){
String message = new String(iterator.next().message());
System.out.println("rec: "+ message);
}
}
}
package com.test.kafka;
import kafka.javaapi.producer.Producer;
import kafka.producer.KeyedMessage;
import kafka.producer.ProducerConfig;
import java.util.Properties;
public class KafkaProducer extends Thread{
private String topic;
private Producer<Integer, String> producer;
public KafkaProducer(String topic){
this.topic = topic;
Properties properties = new Properties();
properties.put("metadata.broker.list",KafkaProperties.BROKER_LIST);
properties.put("serializer.class", "kafka.serializer.StringEncoder");
properties.put("request.required.acks","1");
producer = new Producer<Integer, String>(new ProducerConfig(properties));
}
@Override
public void run() {
int messageNo = 1;
while(true){
String message = "message "+messageNo;
producer.send(new KeyedMessage<Integer, String>(topic, message));
System.out.println("Sent: "+message);
messageNo ++;
try {
Thread.sleep(2000);
} catch (Exception e){
e.printStackTrace();
}
}
}
}
package com.test.kafka;
public class KafkaClientApp {
public static void main(String[] args) {
new KafkaProducer(KafkaProperties.TOPIC).start();
new KafkaConsumer(KafkaProperties.TOPIC).start();
}
}
Flume对接Kafka
kafka sink
type=org.apache.flume.sink.kafka.KafkaSink
brokerList
topic
batchSize
requiredAcks
实战环境搭建
- JDK安装
- Scala安装
- Maven安装
- Hadoop安装
- zookeeper安装
- Hbase安装
- Spark安装
- IDEA+Maven+Spark Streaming
添加依赖
<repositories>
<repository>
<id>cloudera</id>
<url>https://repository.cloudera.com/artifactory/cloudera-repos</url>
</repository>
</repositories>
<dependencies>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>${scala.version}</version>
</dependency>
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka_2.11</artifactId>
<version>${kafka.version}</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>${hadoop.version}</version>
</dependency>
<dependency>
<groupId>org.apache.hbase</groupId>
<artifactId>hbase-client</artifactId>
<version>${hbase.version}</version>
</dependency>
<dependency>
<groupId>org.apache.hbase</groupId>
<artifactId>hbase-server</artifactId>
<version>${hbase.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-flume-sink_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
</dependencies>
example
NetworkWordCount(基于网络实时的文字统计功能)
nc -lk 9999
//在9999端口发消息
- spark-submit提交作业(生产)
spark-submit \ --class org.apache.spark.examples.streaming \ --name NetworkWordCount \ --master local[2] \ /home/kang/app/spark-2.1.0-bin-2.6.0-cdh5.7.0/examples/jars/spark-examples_2.11-2.1.0.jar \ localhost 9999
- spark-shell提交(测试)
spark-shell --master local[2] --jars ~/lib/mysql-connector-java-5.1.34.jar
import org.apache.spark.streaming.{Seconds, StreamingContext}
val ssc = new StreamingContext(sc, Seconds(1))
val lines = ssc.socketTextStream("192.168.247.100", 9999)
val words = lines.flatMap(_.split(" "))
val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _)
wordCounts.print()
ssc.start()
ssc.awaitTermination()
工作原理
- 粗粒度
Spark Streaming接收到实时数据流,把数据按照指定的时间段切成一片片小的数据块,然后把小的数据块传给Spark Engine处理
核心概念
StreamingContext
常用的两个构造方法
The batch interval must be set based on the latency requirements of your application and available cluster resources.
def this(sparkContext: SparkContext, batchDuration: Duration) = {
this(sparkContext, null, batchDuration)
}
def this(conf: SparkConf, batchDuration: Duration) = {
this(StreamingContext.createNewSparkContext(conf), null, batchDuration)
}
After a context is defined, you have to do the following.
- Define the input sources by creating input DStreams.
- Define the streaming computations by applying transformation and output operations to DStreams.
- Start receiving data and processing it using streamingContext.start().
- Wait for the processing to be stopped (manually or due to any error) using streamingContext.awaitTermination().
- The processing can be manually stopped using streamingContext.stop().
Points to remember:
- Once a context has been started, no new streaming computations can be set up or added to it.
- Once a context has been stopped, it cannot be restarted.
- Only one StreamingContext can be active in a JVM at the same time.
- stop() on StreamingContext also stops the SparkContext. To stop only the StreamingContext, set the optional parameter of
stop()
calledstopSparkContext
to false.- A SparkContext can be re-used to create multiple StreamingContexts, as long as the previous StreamingContext is stopped (without stopping the SparkContext) before the next StreamingContext is created.
DStreams
Discretized Stream or DStream is the basic abstraction provided by Spark Streaming. It represents a continuous stream of data, either the input data stream received from source, or the processed data stream generated by transforming the input stream. Internally, a DStream is represented by a continuous series of RDDs, which is Spark’s abstraction of an immutable, distributed dataset.
Any operation applied on a DStream translates to operations on the underlying RDDs
Input DStreams and Receivers
Input DStreams are DStreams representing the stream of input data received from streaming sources. In the quick example,
lines
was an input DStream as it represented the stream of data received from the netcat server. Every input DStream (except file stream, discussed later in this section) is associated with a Receiver (Scala doc, Java doc) object which receives the data from a source and stores it in Spark’s memory for processing.
Transformations on DStreams
Output Operations on DStreams
案例实战
socket数据
需添加依赖
<dependency>
<groupId>com.fasterxml.jackson.module</groupId>
<artifactId>jackson-module-scala_2.11</artifactId>
<version>2.6.5</version>
</dependency>
<dependency>
<groupId>net.jpountz.lz4</groupId>
<artifactId>lz4</artifactId>
<version>1.3.0</version>
</dependency>
package com.test
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
/**
* Spark Streaming处理Socket数据
*/
object NetworkWordCount {
def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount")
val ssc = new StreamingContext(sparkConf,Seconds(5))
val line = ssc.socketTextStream("192.168.247.100",6789)
val result = line.flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_)
result.print()
ssc.start()
ssc.awaitTermination()
}
}
发送socket数据:
nc -lk 6789
文件系统
File Streams: For reading data from files on any file system compatible with the HDFS API (that is, HDFS, S3, NFS, etc.)
package com.test
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
/**
* 处理文件系统数据
*/
object FileWorkCount {
def main(args: Array[String]): Unit = {
//文件系统不需要receiver,可以只用一个线程
val sparkConf = new SparkConf().setMaster("local").setAppName("NetworkWordCount")
val ssc = new StreamingContext(sparkConf,Seconds(5))
//文件整体moving过去
val line = ssc.textFileStream("hdfs://192.168.247.100:9000/sparkStreaming/")
val result = line.flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_)
result.print()
ssc.start()
ssc.awaitTermination()
}
}
updateStateByKey
package com.test
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
object StatefulWordCount {
def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount")
val ssc = new StreamingContext(sparkConf,Seconds(5))
//如果使用stateful的算子,必须要设置checkpoint目录
ssc.checkpoint("hdfs://192.168.247.100:9000/sparkStreaming/")
val line = ssc.socketTextStream("192.168.247.100",6789)
val result = line.flatMap(_.split(" ")).map((_,1))
val state = result.updateStateByKey[Int](updateFunction _)
state.print()
ssc.start()
ssc.awaitTermination()
}
def updateFunction(newValues: Seq[Int], runningCount: Option[Int]): Option[Int] = {
val newCount = newValues.sum + runningCount.getOrElse(0)
Some(newCount)
}
}
数据保存到数据库
dstream.foreachRDD { rdd =>
rdd.foreachPartition { partitionOfRecords =>
// ConnectionPool is a static, lazily initialized pool of connections
val connection = ConnectionPool.getConnection()
partitionOfRecords.foreach(record => connection.send(record))
ConnectionPool.returnConnection(connection) // return to the pool for future reuse
}
}
transform函数的使用之黑名单过滤
zhangshan,123
lisi,123
wangwu,123
package com.test
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
object TransformApp {
def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount")
val ssc = new StreamingContext(sparkConf,Seconds(5))
/**
* 构建黑名单
*/
val blacks = List("zhangshan","lisi")
val balcksRDD = ssc.sparkContext.parallelize(blacks).map((_,true))
val line = ssc.socketTextStream("192.168.247.100",6789)
val clicklog = line.map(x => (x.split(",")(0),x)).transform(rdd => {
rdd.leftOuterJoin(balcksRDD)
.filter(x => x._2._2.getOrElse(false) != true)
.map(_._2._1)
})
clicklog.print()
ssc.start()
ssc.awaitTermination()
}
}
Spark Streaming整合SparkSQL
package com.test
import org.apache.spark.SparkConf
import org.apache.spark.sql.SparkSession
import org.apache.spark.streaming.{Seconds, StreamingContext}
object sqlNetworkWordCount {
def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount")
val ssc = new StreamingContext(sparkConf,Seconds(5))
val line = ssc.socketTextStream("192.168.247.100",6789)
val words = line.flatMap(_.split(" "))
words.foreachRDD { (rdd,time) =>
// Get the singleton instance of SparkSession
val spark = SparkSessionSingleton.getInstance(rdd.sparkContext.getConf)
import spark.implicits._
// Convert RDD[String] to RDD[case class] to DataFrame
val wordsDataFrame = rdd.map(w => Record(w)).toDF()
// Creates a temporary view using the DataFrame
wordsDataFrame.createOrReplaceTempView("words")
// Do word count on table using SQL and print it
val wordCountsDataFrame =
spark.sql("select word, count(*) as total from words group by word")
println(s"========= $time =========")
wordCountsDataFrame.show()
}
ssc.start()
ssc.awaitTermination()
}
}
case class Record(word: String)
object SparkSessionSingleton {
@transient private var instance: SparkSession = _
def getInstance(sparkConf: SparkConf): SparkSession = {
if (instance == null) {
instance = SparkSession
.builder
.config(sparkConf)
.getOrCreate()
}
instance
}
}
Spark Streaming整合Flume
Push方式
添加相关的依赖
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-flume_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
Flume Agent配置
# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
a1.sources.r1.type = exec
a1.sources.r1.command = tail -f /home/kang/flume.log
# Describe the sink
a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
a1.sinks.k1.brokerList = 192.168.247.100:9092
a1.sinks.k1.topic = hello_topic
a1.sinks.k1.batchSize = 100
a1.sinks.k1.requiredAcks = 1
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
Idea 代码
package com.test
import org.apache.spark.streaming.flume._
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
/**
* Spark Streaming整合Flume第一种方式
*/
object FlumePushWordCount {
def main(args: Array[String]): Unit = {
if(args.length != 2){
System.err.println("Usage FlumePushWordCount <hostname> <port>")
System.exit(1)
}
val Array(hostname, port) = args
val sparkConf = new SparkConf().setMaster("local[2]").setAppName("FlumePushWordCount")
val ssc = new StreamingContext(sparkConf,Seconds(5))
val flumeStream = FlumeUtils.createStream(ssc,hostname,port.toInt)
flumeStream.map(item => new String(item.event.getBody.array()).trim)
.flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).print()
ssc.start()
ssc.awaitTermination()
}
}
1)启动sparkstreaming 作业
2)启动flume agent
flume-ng agent --conf $FLUME_HOME/conf --conf-file $FLUME_HOME/conf/avro.conf --name a1 -Dflume.root.logger=INFO,console
- 输入数据,观察IDEA控制台输出
- 服务器上运行
./bin/spark-submit --packages org.apache.spark:spark-streaming-flume_2.11:2.1.0 ...
Pull方式
- 使用可靠的Receiver
可靠的接收器在接收到数据并将数据存储在Spark中时正确地向可靠的源发送确认。
添加依赖
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-flume-sink_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-lang3</artifactId>
<version>3.5</version>
</dependency>
Flume Agent配置
# Name the components on this agent //取别名
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /home/kang/infos.txt
# Describe the sink
a1.sinks.k1.type = org.apache.spark.streaming.flume.sink.SparkSink
a1.sinks.k1.hostname = 192.168.247.1
a1.sinks.k1.port = 4444
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
IDEA 代码
package com.test
import org.apache.spark.SparkConf
import org.apache.spark.streaming.flume._
import org.apache.spark.streaming.{Seconds, StreamingContext}
/**
* Spark Streaming整合Flume第二种方式
*/
object FlumePullWordCount {
def main(args: Array[String]): Unit = {
if(args.length != 2){
System.err.println("Usage FlumePullWordCount <hostname> <port>")
System.exit(1)
}
val Array(hostname, port) = args
val sparkConf = new SparkConf().setMaster("local[2]").setAppName("FlumePullWordCount")
val ssc = new StreamingContext(sparkConf,Seconds(5))
val flumeStream = FlumeUtils.createPollingStream(ssc,hostname,port.toInt)
flumeStream.map(item => new String(item.event.getBody.array()).trim)
.flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).print()
ssc.start()
ssc.awaitTermination()
}
}
先启动Flume,再启动SparkStreaming
Spark Streaming整合Kafka
Receiver-based
启动kafka:
kafka-server-start.sh $KAFKA_HOME/config/server-1.properties
创建topic:kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic kafka_streaming_topic
启动生产者:kafka-console-consumer.sh --zookeeper localhost:2181 --topic kafka_streaming_topic
IDEA代码
package com.test
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.kafka.KafkaUtils
object KafkaReceiverWordCount {
def main(args: Array[String]): Unit = {
if(args.length != 4){
System.err.println("Usage KafkaReceiverWordCount <zkQuorum> <group> <topic> <numThread>")
System.exit(1)
}
val Array(zkQuorum, group, topic, numThread) = args
val sparkConf = new SparkConf().setMaster("local[2]").setAppName("FlumePushWordCount")
val ssc = new StreamingContext(sparkConf,Seconds(5))
val topicMap = topic.split(",").map((_, numThread.toInt)).toMap
val message = KafkaUtils.createStream(ssc, zkQuorum, group, topicMap)
//message第二个才是有效信息
message.map(_._2).flatMap(_.split(" ")).map((_,1))
.reduceByKey(_+_).print()
ssc.start()
ssc.awaitTermination()
}
}
direct方式
package com.test
import kafka.serializer.StringDecoder
import org.apache.spark.SparkConf
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Seconds, StreamingContext}
object KafkaDirectWordCount {
def main(args: Array[String]): Unit = {
if(args.length != 2){
System.err.println("Usage KafkaReceiverWordCount <brokers> <topic>")
System.exit(1)
}
val Array(brokers, topic) = args
val sparkConf = new SparkConf().setMaster("local[2]").setAppName("KafkaDirectWordCount")
val ssc = new StreamingContext(sparkConf,Seconds(5))
val topicSet = topic.split(",").toSet
val kafkaParams = Map[String,String]("metadata.broker.list"-> brokers)
val message = KafkaUtils.createDirectStream[String,String,StringDecoder,StringDecoder](ssc,kafkaParams,topicSet)
//message第二个才是有效信息
message.map(_._2).flatMap(_.split(" ")).map((_,1))
.reduceByKey(_+_).print()
ssc.start()
ssc.awaitTermination()
}
}
log4j+flume+kafka+sparkStreaming
- 编写log4j.properties
log4j.rootLogger = INFO,stdout,flume
log4j.appender.stdout = org.apache.log4j.ConsoleAppender
log4j.appender.stdout.Target = System.out
log4j.appender.stdout.layout = org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern = %d{yyyy-MM-dd HH:mm:ss,SSS} [%t] [%C] [%p] - %m%n
log4j.appender.flume = org.apache.flume.clients.log4jappender.Log4jAppender
log4j.appender.flume.Hostname = 192.168.247.100
log4j.appender.flume.Port = 41414
log4j.appender.flume.UnsafeMode = true
- 添加依赖包
<dependency>
<groupId>org.apache.flume.flume-ng-clients</groupId>
<artifactId>flume-ng-log4jappender</artifactId>
<version>1.6.0</version>
</dependency>
- logger 产生器
import org.apache.log4j.Logger;
public class LoggerGenerator {
private static Logger logger = Logger.getLogger(LoggerGenerator.class.getName());
public static void main(String[] args) throws Exception {
int index = 0;
while(true){
Thread.sleep(2000);
logger.info("value : " + index++ );
}
}
}
- flume 配置文件
# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
a1.sources.r1.type = avro
a1.sources.r1.bind = 192.168.247.100
a1.sources.r1.port = 41414
# Describe the sink
a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
a1.sinks.k1.brokerList = 192.168.247.100:9092
a1.sinks.k1.topic = hello_topic
a1.sinks.k1.batchSize = 10
a1.sinks.k1.requiredAcks = 1
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
项目实战
- 为什么要记录用户访问行为日志
网站页面的访问量
网站的粘性
推荐
python日志产生器
- python代码
#coding=utf-8
import random
import time
url_path = [
"class/112.html",
"class/128.html",
"class/145.html",
"class/146.html",
"class/131.html",
"class/130.html",
"learn/821",
"course/list",
]
ip_slices = [123,132,10,98,43,55,72,89,31,192,168,247,99]
http_reference = [
"http://www.baidu.com/s?wd={query}",
"http://www.sogou.com/web?query={query}",
"http://cn.bing.com/search?q={query}",
"http://search.yahoo.com/search?p={query}"
]
search_keyword = [
"Spark SQL实战"
"Hadoop基础",
"Storm实战",
"Spark Streaming实战",
"大数据",
"java"
]
status_codes = ["200", "404", "500"]
def sample_ip():
slice = random.sample(ip_slices, 4)
return ".".join([str(item) for item in slice])
def sample_url():
return random.sample(url_path, 1)[0]
def sample_referer():
if random.uniform(0, 1) > 0.2:
return "-"
refer_str = random.sample(http_reference,1)
query_str = random.sample(search_keyword, 1)
return refer_str[0].format(query=query_str[0])
def sample_status_code():
return random.sample(status_codes, 1)[0]
def generate_log(count = 10):
time_str = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
f = open("/home/kang/project/SparkStreaming/logs/access.log","w+")
while count >= 1:
query_log = "{ip}\t{localtime}\t\"GET /{url} HTTP/1.1\"\t{status}\t{referer}".format(url=sample_url(), ip=sample_ip(), referer=sample_referer(), status=sample_status_code(), localtime=time_str)
print query_log
f.write(query_log + "\n")
count = count - 1
if __name__ == '__main__':
generate_log(100)
- 定时调度器工具crontab
一分钟执行一次
crontab -e
*/1 * * * * /home/kang/project/SparkStreaming/shell/generator_log.sh
:x 执行
flume+kafka+sparkstreaming连通,清洗
- flume
# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /home/kang/project/SparkStreaming/logs/access.log
# Describe the sink
a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
a1.sinks.k1.brokerList = 192.168.247.100:9092
a1.sinks.k1.topic = hello_topic
a1.sinks.k1.batchSize = 10
a1.sinks.k1.requiredAcks = 1
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
- Spark
package com.test.project
import com.test.project.domain.ClickLog
import org.apache.spark.SparkConf
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Seconds, StreamingContext}
object ImoocStatStreamingApp {
def main(args: Array[String]): Unit = {
if(args.length != 4){
System.err.println("Usage KafkaReceiverWordCount <zkQuorum> <group> <topic> <numThread>")
System.exit(1)
}
val Array(zkQuorum, group, topic, numThread) = args
val sparkConf = new SparkConf().setMaster("local[2]").setAppName("FlumePushWordCount")
val ssc = new StreamingContext(sparkConf,Seconds(60))
val topicMap = topic.split(",").map((_, numThread.toInt)).toMap
val message = KafkaUtils.createStream(ssc, zkQuorum, group, topicMap)
//测试数据接收
// message.map(_._2).print()
val logs = message.map(_._2)
val cleanData = logs.map(line => {
val infos = line.split("\t")
val url = infos(2).split(" ")(1)
var courseId = 0
if(url.startsWith("/class")){
val courseIdHTML = url.split("/")(2)
courseId = courseIdHTML.substring(0,courseIdHTML.lastIndexOf(".")).toInt
}
ClickLog(infos(0), infos(1), courseId, infos(3).toInt, infos(4))
}).filter(clicklog => clicklog.courseId != 0)
cleanData.print()
ssc.start()
ssc.awaitTermination()
}
}
今天到现在为止实战课程的访问量
- HBase表设计
创建表:create 'imooc_course_clickcount', 'info'
RowKey设计:day_courseid
- HBase DAO
package com.test.project.dao
import com.test.project.domain.CourseClickCount
import org.apache.hadoop.hbase.client.Get
import org.apache.hadoop.hbase.util.Bytes
import utils.HbaseUtil
import scala.collection.mutable.ListBuffer
/**
* 访问层
*/
object CourseClickCountDAO {
val tableName = "imooc_course_clickcount"
val cf = "info"
val qualifer = "click_count"
def save(list: ListBuffer[CourseClickCount]) = {
val table = HbaseUtil.getInstance().getTable(tableName)
for(ele <- list) {
table.incrementColumnValue(Bytes.toBytes(ele.day_course),
Bytes.toBytes(cf),
Bytes.toBytes(qualifer),
ele.click_count)
}
}
def count(day_course:String):Long = {
val table = HbaseUtil.getInstance().getTable(tableName)
val get = new Get(Bytes.toBytes(day_course))
val value = table.get(get).getValue(cf.getBytes, qualifer.getBytes)
if(value == null){
0l
} else{
Bytes.toLong(value)
}
}
def main(args: Array[String]): Unit = {
val list = new ListBuffer[CourseClickCount]
list+=(CourseClickCount("20190314_7",18),CourseClickCount("20190313_6",66))
save(list)
println(count("20190314_7") + count("20190313_6"))
}
}
今天到现在为止搜索引擎引流过来的实战课程访问量
- HBase表设计
创建表:create 'imooc_search_course_clickcount', 'info'
RowKey设计:day_referer_courseid
- HBase DAO
package com.test.project.dao
import com.test.project.domain.{CourseClickCount, CourseSearchClickCount}
import org.apache.hadoop.hbase.client.Get
import org.apache.hadoop.hbase.util.Bytes
import utils.HbaseUtil
import scala.collection.mutable.ListBuffer
/**
* 访问层
*/
object CourseSearchClickCountDAO {
val tableName = "imooc_course_search_clickcount"
val cf = "info"
val qualifer = "click_count"
def save(list: ListBuffer[CourseSearchClickCount]) = {
val table = HbaseUtil.getInstance().getTable(tableName)
for(ele <- list) {
table.incrementColumnValue(Bytes.toBytes(ele.day_search_course),
Bytes.toBytes(cf),
Bytes.toBytes(qualifer),
ele.click_count)
}
}
def count(day_course:String):Long = {
val table = HbaseUtil.getInstance().getTable(tableName)
val get = new Get(Bytes.toBytes(day_course))
val value = table.get(get).getValue(cf.getBytes, qualifer.getBytes)
if(value == null){
0l
} else{
Bytes.toLong(value)
}
}
def main(args: Array[String]): Unit = {
println(count("20190315_www.baidu.com_112"))
}
}
package com.test.project
import com.test.project.dao.{CourseClickCountDAO, CourseSearchClickCountDAO}
import com.test.project.domain.{ClickLog, CourseClickCount, CourseSearchClickCount}
import com.test.project.util.DataUtils
import org.apache.spark.SparkConf
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Seconds, StreamingContext}
import scala.collection.mutable.ListBuffer
object ImoocStatStreamingApp {
def main(args: Array[String]): Unit = {
if(args.length != 4){
System.err.println("Usage KafkaReceiverWordCount <zkQuorum> <group> <topic> <numThread>")
System.exit(1)
}
val Array(zkQuorum, group, topic, numThread) = args
val sparkConf = new SparkConf().setMaster("local[2]").setAppName("FlumePushWordCount")
val ssc = new StreamingContext(sparkConf,Seconds(60))
val topicMap = topic.split(",").map((_, numThread.toInt)).toMap
val message = KafkaUtils.createStream(ssc, zkQuorum, group, topicMap)
//测试数据接收
// message.map(_._2).print()
val logs = message.map(_._2)
val cleanData = logs.map(line => {
val infos = line.split("\t")
val url = infos(2).split(" ")(1)
var courseId = 0
if(url.startsWith("/class")){
val courseIdHTML = url.split("/")(2)
courseId = courseIdHTML.substring(0,courseIdHTML.lastIndexOf(".")).toInt
}
ClickLog(infos(0), DataUtils.parse(infos(1)), courseId, infos(3).toInt, infos(4))
}).filter(clicklog => clicklog.courseId != 0)
// cleanData.print()
/**
* 统计今天到现在为止实战课程访问量
*/
cleanData.map(x => {
(x.time+"_"+x.courseId, 1)
}).reduceByKey(_+_).foreachRDD(rdd => {
rdd.foreachPartition(partitionRecodes => {
val list = new ListBuffer[CourseClickCount]
partitionRecodes.foreach(pair => {
list += (CourseClickCount(pair._1, pair._2))
})
CourseClickCountDAO.save(list)
})
})
/**
* 统计从搜索引擎过来的课程访问量
*/
cleanData.map(x => {
val referer = x.referer.replaceAll("//","/")
val splits = referer.split("/")
var host = ""
if(splits.length > 2){
host = splits(1)
}
(host, x.courseId, x.time)
}).filter(_._1!="").map(x => {
(x._3 + "_" + x._1+ "_" + x._2, 1)
}).reduceByKey(_+_).foreachRDD(rdd => {
rdd.foreachPartition(partitionRecodes => {
val list = new ListBuffer[CourseSearchClickCount]
partitionRecodes.foreach(pair => {
list += (CourseSearchClickCount(pair._1, pair._2))
})
CourseSearchClickCountDAO.save(list)
})
})
ssc.start()
ssc.awaitTermination()
}
}