在前面曾经探索过销毁流程和方式,其实还有一种方式:
button.rx.tap
.takeUntil(vc.rx.deallocating)
.subscribe { (event) in
print("页面释放时销毁序列")
}
不过今天想分析的不是takeUntil,而是deallocating,deallocating的探索过程会跟之前不太一样,先来看看例子:
vc.rx.deallocating
.subscribe { (event) in
print("页面将要释放")
}
- 看看序列的创建,首先创建了
DeallocatingProxy
类,再返回序列(proxy.messageSent.asObservable()
):
vc.rx.deallocating
extension Reactive where Base: AnyObject {
...
public var deallocating: Observable<()> {
return self.synchronized {
do {
let proxy: DeallocatingProxy = try self.registerMessageInterceptor(deallocSelector)
return proxy.messageSent.asObservable()
}
catch let e {
return Observable.error(e)
}
}
}
fileprivate func registerMessageInterceptor<T: MessageInterceptorSubject>(_ selector: Selector) throws -> T {
...
let targetImplementation = RX_ensure_observing(self.base, selector, &error)
if targetImplementation == nil {
throw error?.rxCocoaErrorForTarget(self.base) ?? RxCocoaError.unknown
}
subject.targetImplementation = targetImplementation!
return subject
}
}
-
registerMessageInterceptor
函数的代码看上去有点复杂,重点在于RX_ensure_observing
,内部竟然是OC代码:
IMP __nullable RX_ensure_observing(id __nonnull target, SEL __nonnull selector, NSErrorParam error) {
__block IMP targetImplementation = nil;
@synchronized(target) {
@synchronized([target class]) {
[[RXObjCRuntime instance] performLocked:^(RXObjCRuntime * __nonnull self) {
targetImplementation = [self ensurePrepared:target
forObserving:selector
error:error];
}];
}
}
return targetImplementation;
}
[[RXObjCRuntime instance] performLocked:^(RXObjCRuntime * __nonnull self) { }
只是确保调用安全:
- 接着看block里调用的方法,这个方法的代码真的很多,只好直接找重点
swizzleDeallocating
:
@implementation RXObjCRuntime
...
-(IMP __nullable)ensurePrepared:(id __nonnull)target forObserving:(SEL __nonnull)selector error:(NSErrorParam)error {
...
if (selector == deallocSelector) {
Class __nonnull deallocSwizzingTarget = [target class];
IMP interceptorIMPForSelector = [self interceptorImplementationForSelector:selector forClass:deallocSwizzingTarget];
if (interceptorIMPForSelector != nil) {
return interceptorIMPForSelector;
}
if (![self swizzleDeallocating:deallocSwizzingTarget error:error]) {
return nil;
}
interceptorIMPForSelector = [self interceptorImplementationForSelector:selector forClass:deallocSwizzingTarget];
if (interceptorIMPForSelector != nil) {
return interceptorIMPForSelector;
}
}
...
}
...
@end
- 看看
swizzleDeallocating
的实现,关键来了,转眼跳转到了宏,这写法就容易眼花了,得慢慢一一对应(我把参数一一分开,大家应该容易看懂点):
@implementation RXObjCRuntime (InfrastructureMethods)
...
SWIZZLE_INFRASTRUCTURE_METHOD(
void,
swizzleDeallocating,
,
deallocSelector,
DEALLOCATING_BODY
)
@end
// infrastructure method
#define NO_BODY(...)
#define SWIZZLE_INFRASTRUCTURE_METHOD(
return_value,
method_name,
parameters,
method_selector,
body,
...
) \
SWIZZLE_METHOD(
return_value,
-(BOOL)method_name:(Class __nonnull)class parameters error:(NSErrorParam)error \
{ \
SEL selector = method_selector; , //留意这里只是第二个参数
body,
NO_BODY,
__VA_ARGS__
) \
// common base
#define SWIZZLE_METHOD(
return_value,
method_prototype,
body,
invoked_body,
...
) \
method_prototype \
__unused SEL rxSelector = RX_selector(selector); \
IMP (^newImplementationGenerator)(void) = ^() { \
...
}; \
\
IMP (^replacementImplementationGenerator)(IMP) = ^(IMP originalImplementation) { \
...
}; \
\
return [self ensureSwizzledSelector:selector \
ofClass:class \
newImplementationGenerator:newImplementationGenerator \
replacementImplementationGenerator:replacementImplementationGenerator \
error:error]; \
} \
- 最后发现宏的重点是通过调用
ensureSwizzledSelector
交换两个方法的IMP函数指针,实现ensureSwizzledSelector
的代码也是很多,继续抓重点class_addMethod
:
-(BOOL)ensureSwizzledSelector:(SEL __nonnull)selector
ofClass:(Class __nonnull)class
newImplementationGenerator:(IMP(^)(void))newImplementationGenerator
replacementImplementationGenerator:(IMP (^)(IMP originalImplementation))replacementImplementationGenerator
error:(NSErrorParam)error {
...
IMP newImplementation = newImplementationGenerator();
if (class_addMethod(class, selector, newImplementation, encoding)) {
[self registerInterceptedSelector:selector implementation:newImplementation forClass:class];
return YES;
}
...
}
@end
- 来到这里梳理一下思路,
deallocating
其实就是利用runtime交换方法来达到监听的目的。
- 这么一大圈才完成了
DeallocatingProxy
的创建流程,然后才是序列(proxy.messageSent.asObservable()
):
fileprivate final class DeallocatingProxy
: MessageInterceptorSubject
, RXDeallocatingObserver {
...
let messageSent = ReplaySubject<()>.create(bufferSize: 1)
...
@objc func deallocating() {
self.messageSent.on(.next(()))
}
deinit {
self.messageSent.on(.completed)
}
}
接着可以看见DeallocatingProxy
的deallocating()
函数会发送响应出去,根据RxSwift核心逻辑,最终来到外面的响应闭包:
.subscribe { (event) in
print("页面将要释放")
}
- 但是一直没看见
deallocating()
的调用,这里需要我们回顾一下上面的流程,因为它在这里调用了:
#define DEALLOCATING_BODY(...) \
id<RXDeallocatingObserver> observer = objc_getAssociatedObject(self, rxSelector); \
if (observer != nil && observer.targetImplementation == thisIMP) { \
[observer deallocating]; \
}
所以当监听的对象销毁时,便执行DeallocatingProxy
的deallocating()
发送响应,最后DeallocatingProxy
销毁时,便发送完成信号销毁序列。