文科生如何理解循环神经网络(RNN)?

这一份视频教程中,我会用简明的例子和手绘图,为你讲解循环神经网络(Recurrent Neural Network, RNN)的原理和使用方法。

关于深度学习,我已经为你讲解了不少内容了。

咱们简单回顾一下。常见的深度学习任务,面对的数据类型主要是三类:

第一类,是结构化数据,也就是样本和属性组成的表格。例如《如何用Python和深度神经网络锁定即将流失的客户?》一文中,我们用到的表格:

这种数据格式,最为简单。你也很容易理解深度神经网络的结构和处理方法。

第二类,是图像数据。《如何用 Python 和 fast.ai 做图像深度迁移学习?》一文中,我给你详细介绍过如何用卷积神经网络来处理它。

第三类,是序列数据,例如文本。《如何用 Python 和深度迁移学习做文本分类?》一文里面,咱们已经展示了如何使用 fast.ai 提供的语言模型对其进行处理。

其中,图像和序列数据,处理起来更需要你对深度神经网络结构的理解。

作为文科生,你在学习卷积神经网络和循环神经网络的时候,可能会遇到一些问题。因为它们大多采用比较复杂的结构图和公式进行描述。

当然,你看到了,即便你对于循环神经网络不了解,把它当成一个黑箱,你依然可以用高阶的深度学习框架,例如 fast.ai ,执行自然语言处理任务,而且效果还很突出。

François Chollet 在他的 "Deep Learning with Python" 一书中,也提到过这种观点(注意这里说的是 RNN 的一个变种,叫做 LSTM):

you don’t need to understand anything about the specific architecture of an LSTM cell; as a human, it shouldn’t be your job to understand it.

但是注意, François Chollet 后面还有一句话:

Just keep in mind what the LSTM cell is meant to do.

也就是说,它的实现细节,你不需要考虑。

当然,它的作用,你还是得了解的。

如果你需要做研究,就得针对具体的任务,对神经网络中的各种模块进行调整、拼装和整合。

这时候,如果你对深度神经网络的理解,基本上等同于黑箱,那么你甚至都不知道该如何把它的输出和其他模块拼接起来。

之前,我给你做了个视频讲解《文科生如何理解卷积神经网络?》,为你把卷积神经网络的原理进行了拆解剖析。

从读者和观众们的反馈来看,许多人觉得有帮助。

有不少人留言,希望我以同样通俗易懂的讲法,讲讲用于处理序列数据(例如文本)的循环神经网络(Recurrent Neural Network, RNN)的原理。

其实,我也早就想为你讲解这一部分的知识。无奈序列是个动态的概念,所以用文字来给你讲解循环神经网络模型,效率不高。

好在,我最近刚刚学会,如何在录制视频的时候,使用手写输入。于是我立即把这一技术,纳入到咱们的教程制作中来。

我花了一个晚上的时间,为你做了这份视频教程。已发布到了腾讯视频,链接在这里

从我们耳熟能详的一个故事讲起,触类旁通,让你更容易理解循环神经网络的作用、特点和结构。

除了前文提到的一些材料,视频中还提及了词嵌入(word embedding)的相关知识。这一部分,你可以参考《如何用Python处理自然语言?(Spacy与Word Embedding)》和《如何用 Python 和 gensim 调用中文词嵌入预训练模型?》。

希望这份视频教程,对你了解循环神经网络能有帮助。

祝(深度)学习愉快!

喜欢请点赞和打赏。还可以微信关注和置顶我的公众号“玉树芝兰”(nkwangshuyi)

如果你对 Python 与数据科学感兴趣,不妨阅读我的系列教程索引贴《如何高效入门数据科学?》,里面还有更多的有趣问题及解法。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,324评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,303评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,192评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,555评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,569评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,566评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,927评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,583评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,827评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,590评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,669评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,365评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,941评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,928评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,159评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,880评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,399评论 2 342