使用Tesorflow实现线性回归

我们用Tensorflow实现线性回归(linear regression learning)算法:

首先,导入需要的包:

import tensorflow as tf
import numpy
import matplotlib.pyplot as plt
rng = numpy.random

设置训练的参数:

# Parameters
learning_rate = 0.01
training_epochs = 1000
display_step = 50

其中,learning_rate是梯度下降的速率,training_epochs是训练时的最大迭代次数,display_step用于将训练的信息打印出来,打印前50步的信息。

然后是读取训练集数据

# Training Data
train_X = numpy.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,
                         7.042,10.791,5.313,7.997,5.654,9.27,3.1])
train_Y = numpy.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,
                         2.827,3.465,1.65,2.904,2.42,2.94,1.3])
n_samples = train_X.shape[0]
# tf Graph Input
X = tf.placeholder("float")
Y = tf.placeholder("float")

# Set model weights
W = tf.Variable(rng.randn(), name="weight")
b = tf.Variable(rng.randn(), name="bias")

构建线性模型:

# Construct a linear model
pred = tf.add(tf.multiply(X, W), b)

以Mean squared error作为训练的目标函数:

# Mean squared error
cost = tf.reduce_sum(tf.pow(pred-Y, 2))/(2*n_samples)
# Gradient descent
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)

初始化变量

# Initialize the variables (i.e. assign their default value)
init = tf.global_variables_initializer()

开始训练:

# Start training
with tf.Session() as sess:
    sess.run(init)

    # Fit all training data
    for epoch in range(training_epochs):
        for (x, y) in zip(train_X, train_Y):
            sess.run(optimizer, feed_dict={X: x, Y: y})

        #Display logs per epoch step
        if (epoch+1) % display_step == 0:
            c = sess.run(cost, feed_dict={X: train_X, Y:train_Y})
            print "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c), \
                "W=", sess.run(W), "b=", sess.run(b)

    print "Optimization Finished!"
    training_cost = sess.run(cost, feed_dict={X: train_X, Y: train_Y})
    print "Training cost=", training_cost, "W=", sess.run(W), "b=", sess.run(b), '\n'

    #Graphic display
    plt.plot(train_X, train_Y, 'ro', label='Original data')
    plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
    plt.legend()
    plt.show()

程序的输出:

Epoch: 0050 cost= 0.195095107 W= 0.441748 b= -0.580876
Epoch: 0100 cost= 0.181448311 W= 0.430319 b= -0.498661
Epoch: 0150 cost= 0.169377610 W= 0.419571 b= -0.421336
Epoch: 0200 cost= 0.158700854 W= 0.409461 b= -0.348611
Epoch: 0250 cost= 0.149257123 W= 0.399953 b= -0.28021
Epoch: 0300 cost= 0.140904188 W= 0.391011 b= -0.215878
Epoch: 0350 cost= 0.133515999 W= 0.3826 b= -0.155372
Epoch: 0400 cost= 0.126981199 W= 0.374689 b= -0.0984639
Epoch: 0450 cost= 0.121201262 W= 0.367249 b= -0.0449408
Epoch: 0500 cost= 0.116088994 W= 0.360252 b= 0.00539905
Epoch: 0550 cost= 0.111567356 W= 0.35367 b= 0.052745
Epoch: 0600 cost= 0.107568085 W= 0.34748 b= 0.0972751
Epoch: 0650 cost= 0.104030922 W= 0.341659 b= 0.139157
Epoch: 0700 cost= 0.100902475 W= 0.336183 b= 0.178547
Epoch: 0750 cost= 0.098135538 W= 0.331033 b= 0.215595
Epoch: 0800 cost= 0.095688373 W= 0.32619 b= 0.25044
Epoch: 0850 cost= 0.093524046 W= 0.321634 b= 0.283212
Epoch: 0900 cost= 0.091609895 W= 0.317349 b= 0.314035
Epoch: 0950 cost= 0.089917004 W= 0.31332 b= 0.343025
Epoch: 1000 cost= 0.088419855 W= 0.30953 b= 0.370291
Optimization Finished!
Training cost= 0.0884199 W= 0.30953 b= 0.370291 

最终训练结果:


image.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,607评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,047评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,496评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,405评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,400评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,479评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,883评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,535评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,743评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,544评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,612评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,309评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,881评论 3 306
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,891评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,136评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,783评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,316评论 2 342

推荐阅读更多精彩内容