小猿圈Python开发之绘制频率分布直方图示例

现在人工智能越来越实用,甚至深入到千家万户,随之而来的就是python技术的火爆,今天小猿圈python讲师为你讲解一下绘制频率分布直方图示例,希望对于刚刚自学python的你有一定的帮助。

项目中在前期经常要看下数据的分布情况,这对于探究数据规律非常有用。概率分布表示样本数据的模样,长的好不好看如果有图像展示出来就非常完美了,使用Python绘制频率分布直方图非常简洁,因为用的频次非常高,这里记录下来。还是Python大法好,代码简洁不拖沓~

如果数据取值的范围跨度不大,可以使用等宽区间来展示直方图,这也是最常见的一种;如果数据取值范围比较野,也可以自定义区间端点,绘制图像,下面分两种情况展示

1.区间长度相同绘制直方图

#-*- encoding=utf-8 -*-

import datetime

import numpy as np

import matplotlib.pyplot as plt

import matplotlib

zhfont1 = matplotlib.font_manager.FontProperties(fname='C:\Windows\Fonts\simsun.ttc')

# 按照固定区间长度绘制频率分布直方图

# bins_interval 区间的长度

# margin    设定的左边和右边空留的大小

def probability_distribution(data, bins_interval=1, margin=1):

  bins = range(min(data), max(data) + bins_interval - 1, bins_interval)

  print(len(bins))

  for i in range(0, len(bins)):

    print(bins[i])

  plt.xlim(min(data) - margin, max(data) + margin)

  plt.title("probability-distribution")

  plt.xlabel('Interval')

  plt.ylabel('Probability')

  plt.hist(x=data, bins=bins, histtype='bar', color=['r'])

  plt.show()

2.区间长度不同绘制直方图

#-*- encoding=utf-8 -*-

import datetime

import numpy as np

import matplotlib.pyplot as plt

import matplotlib

zhfont1 = matplotlib.font_manager.FontProperties(fname='C:\Windows\Fonts\simsun.ttc'

# 自己给定区间,小于区间左端点和大于区间右端点的统一做处理,对于数据分布不均很的情况处理较友好

# bins  自己设定的区间数值列表

# margin  设定的左边和右边空留的大小

# label  右上方显示的图例文字

"""e

  import numpy as np

  data = np.random.normal(0, 1, 1000)

  bins = np.arange(-5, 5, 0.1)

  probability_distribution_extend(data=data, bins=bins)

"""

def probability_distribution_extend(data, bins, margin=1, label='Distribution'):

  bins = sorted(bins)

  length = len(bins)

  intervals = np.zeros(length+1)

  for value in data:

    i = 0

    while i < length and value >= bins[i]:

      i += 1

    intervals[i] += 1

  intervals = intervals / float(len(data))

  plt.xlim(min(bins) - margin, max(bins) + margin)

  bins.insert(0, -999)

  plt.title("probability-distribution")

  plt.xlabel('Interval')

  plt.ylabel('Probability')

  plt.bar(bins, intervals, color=['r'], label=label)

  plt.legend()

  plt.show()

Case示例

if __name__ == '__main__':

  data = [1,4,6,7,8,9,11,11,12,12,13,13,16,17,18,22,25]

  probability_distribution(data=data, bins_interval=5,margin=0)

以上就是小猿圈python讲师给大家分享的绘制频率分布直方图示例,希望对小伙伴们有所帮助Python交流群:874680195,想要了解更多内容的小伙伴可以到小猿圈直接观看,想要学好Python开发技术的小伙伴快快行动吧。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,053评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,527评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,779评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,685评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,699评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,609评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,989评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,654评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,890评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,634评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,716评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,394评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,976评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,950评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,191评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,849评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,458评论 2 342

推荐阅读更多精彩内容