吴恩达deep_learning_week2_logistic回归

吴恩达deep_learning_week2_logistic回归

标签: 机器学习深度学习


这是吴恩达深度学习里的第一次作业

实现logistic回归


1. 先导入包

import numpy as np
import matplotlib.pyplot as plt
import h5py
import scipy
from PIL import Image
import pylab
from scipy import ndimage
from lr_utils import load_dataset #这个是里面的一个导入数据的py文件

2. 导入数据,再显示一张图片看看效果

导入数据代码如下:

# Loading the data (cat/non-cat)
train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset()
#分别为训练集x 209个,训练集y 209个,测试集x 50个,测试集y 50个


这是一张图片


图片
#这时输出上面这张图的代码
index = 19
plt.imshow(train_set_x_orig[index])
pylab.show()
print ("y = " + str(train_set_y[:, index]) + ", it's a '" + classes[np.squeeze(train_set_y[:, index])].decode("utf-8") +  "' picture.")

之后会让你看看导入数据的维数,代码如下:

### START CODE HERE ### (≈ 3 lines of code)
m_train = train_set_x_orig.shape[0]
m_test = test_set_x_orig.shape[0]
num_px = train_set_x_orig.shape[1]
### END CODE HERE ###

print ("Number of training examples: m_train = " + str(m_train))
print ("Number of testing examples: m_test = " + str(m_test))
print ("Height/Width of each image: num_px = " + str(num_px))
print ("Each image is of size: (" + str(num_px) + ", " + str(num_px) + ", 3)")
print ("train_set_x shape: " + str(train_set_x_orig.shape))
print ("train_set_y shape: " + str(train_set_y.shape))
print ("test_set_x shape: " + str(test_set_x_orig.shape))
print ("test_set_y shape: " + str(test_set_y.shape))

结果显示是这样:


结果显示

3. 现在可以开始写函数了

首先把训练数据的64643的矩阵变化为向量,代码如下:

### START CODE HERE ### (≈ 2 lines of code)
train_set_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T
test_set_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T
###现在处理好了图像,将其全部向量化了

将原来的四维(样本个数,图片横,竖,RGB)变为二维(样本个数,其他所有)


然后现在开始归一化

#现在开始归一化,将RGB里的0-255全部变为0-1(除以255)
train_set_x = train_set_x_flatten/255.
test_set_x = test_set_x_flatten/255.

现在可以开始写各种函数了:

sogmoid函数

    def sigmoid(z):
    #     """
    #     Compute the sigmoid of z
    #
    #     Arguments:
    #     z -- A scalar or numpy array of any size.
    # ​
    #     Return:
    #     s -- sigmoid(z)
    #     """
    ### START CODE HERE ### (≈ 1 line of code)
    s=1./(1.+ np.exp(-z))
    ### END CODE HERE ###

    return s

随机初始化w和b的函数

def initialize_with_zeros(dim):
        # """
        # This function creates a vector of zeros of shape (dim, 1) for w and initializes b to 0.
        #
        # Argument:
        # dim -- size of the w vector we want (or number of parameters in this case)
        #
        # Returns:
        # w -- initialized vector of shape (dim, 1)
        # b -- initialized scalar (corresponds to the bias)
        # """

        ### START CODE HERE ### (≈ 1 line of code)
        w = np.zeros((dim, 1))
        b = 0
        ### END CODE HERE ###

        assert (w.shape == (dim, 1))
        assert (isinstance(b, float) or isinstance(b, int))

        return w, b

现在来前向和反向传播

def propagate(w, b, X, Y):
    #     """
    #     Implement the cost function and its gradient for the propagation explained above
    # ​
    #     Arguments:
    #     w -- weights, a numpy array of size (num_px * num_px * 3, 1)
    #     b -- bias, a scalar
    #     X -- data of size (num_px * num_px * 3, number of examples)
    #     Y -- true "label" vector (containing 0 if non-cat, 1 if cat) of size (1, number of examples)
    # ​
    #     Return:
    #     cost -- negative log-likelihood cost for logistic regression
    #     dw -- gradient of the loss with respect to w, thus same shape as w
    #     db -- gradient of the loss with respect to b, thus same shape as b
    #
    #     Tips:
    #     - Write your code step by step for the propagation. np.log(), np.dot()
    #     """

        m = X.shape[1]

        # FORWARD PROPAGATION (FROM X TO COST)
        ### START CODE HERE ### (≈ 2 lines of code)
        A = sigmoid(np.dot(w.T , X) + b)  # compute activation
        cost = np.sum(Y * np.log(A) + (1-Y) * np.log(1-A))/(-m)  # compute cost
        ### END CODE HERE ###

        # BACKWARD PROPAGATION (TO FIND GRAD)
        ### START CODE HERE ### (≈ 2 lines of code)
        dw = np.dot(X , (A-Y).T)/m
        db = np.sum(A-Y)/m
        ### END CODE HERE ### ​
        assert (dw.shape == w.shape)
        assert (db.dtype == float)
        cost = np.squeeze(cost)
        assert (cost.shape == ())

        grads = {"dw": dw,
                 "db": db}

        return grads, cost

更新w和b的函数

def optimize(w, b, X, Y, num_iterations, learning_rate, print_cost=False):
    # """
    # This function optimizes w and b by running a gradient descent algorithm
    #
    # Arguments:
    # w -- weights, a numpy array of size (num_px * num_px * 3, 1)
    # b -- bias, a scalar
    # X -- data of shape (num_px * num_px * 3, number of examples)
    # Y -- true "label" vector (containing 0 if non-cat, 1 if cat), of shape (1, number of examples)
    # num_iterations -- number of iterations of the optimization loop
    # learning_rate -- learning rate of the gradient descent update rule
    # print_cost -- True to print the loss every 100 steps
    #
    # Returns:
    # params -- dictionary containing the weights w and bias b
    # grads -- dictionary containing the gradients of the weights and bias with respect to the cost function
    # costs -- list of all the costs computed during the optimization, this will be used to plot the learning curve.
    #
    # Tips:
    # You basically need to write down two steps and iterate through them:
    #     1) Calculate the cost and the gradient for the current parameters. Use propagate().
    #     2) Update the parameters using gradient descent rule for w and b.
    # """

    costs = []

    for i in range(num_iterations):

        # Cost and gradient calculation (≈ 1-4 lines of code)
        ### START CODE HERE ###
        grads, cost = propagate(w , b , X , Y)
        ### END CODE HERE ###

        # Retrieve derivatives from grads
        dw = grads["dw"]
        db = grads["db"]

        # update rule (≈ 2 lines of code)
        ### START CODE HERE ###
        w = w - learning_rate * dw
        b = b - learning_rate * db
        ### END CODE HERE ###

        # Record the costs
        if i % 100 == 0:
            costs.append(cost)

        # Print the cost every 100 training examples
        # 每100次输出一个代价函数
        if print_cost and i % 100 == 0:
            print("Cost after iteration %i: %f" % (i, cost))

    params = {"w": w,
              "b": b}

    grads = {"dw": dw,
             "db": db}

    return params, grads, costs

现在这是预测函数

def predict(w, b, X):
    # '''
    # Predict whether the label is 0 or 1 using learned logistic regression parameters (w, b)
    #
    # Arguments:
    # w -- weights, a numpy array of size (num_px * num_px * 3, 1)
    # b -- bias, a scalar
    # X -- data of size (num_px * num_px * 3, number of examples)
    #
    # Returns:
    # Y_prediction -- a numpy array (vector) containing all predictions (0/1) for the examples in X
    # '''

    m = X.shape[1]
    Y_prediction = np.zeros((1, m))
    w = w.reshape(X.shape[0], 1)

    # Compute vector "A" predicting the probabilities of a cat being present in the picture
    ### START CODE HERE ### (≈ 1 line of code)
    A = np.dot(w.T , X)
    ### END CODE HERE ###

    for i in range(A.shape[1]):
        # Convert probabilities A[0,i] to actual predictions p[0,i]
        ### START CODE HERE ### (≈ 4 lines of code)
        if (A[0, i] > 0.5):
            Y_prediction[0][i] = 1
        else:
            Y_prediction[0][i] = 0
        ### END CODE HERE ###

    assert (Y_prediction.shape == (1, m))

    return Y_prediction

4.现在终于可以开始真正的训练参数了(之前都是用的测试,现在开始用真正的图片数据来训练)

代码如下:

#现在开始将上面的这些函数整合起来
# GRADED FUNCTION: model
print("===============终于,开始处理图像了=========================")
def model(X_train, Y_train, X_test, Y_test, num_iterations=10000, learning_rate=0.01, print_cost=False):
        # """
        # Builds the logistic regression model by calling the function you've implemented previously
        #
        # Arguments:
        # X_train -- training set represented by a numpy array of shape (num_px * num_px * 3, m_train)
        # Y_train -- training labels represented by a numpy array (vector) of shape (1, m_train)
        # X_test -- test set represented by a numpy array of shape (num_px * num_px * 3, m_test)
        # Y_test -- test labels represented by a numpy array (vector) of shape (1, m_test)
        # num_iterations -- hyperparameter representing the number of iterations to optimize the parameters
        # learning_rate -- hyperparameter representing the learning rate used in the update rule of optimize()
        # print_cost -- Set to true to print the cost every 100 iterations
        #
        # Returns:
        # d -- dictionary containing information about the model.
        # """

        ### START CODE HERE ###

        # initialize parameters with zeros (≈ 1 line of code)
        w, b = initialize_with_zeros(X_train.shape[0])

        # Gradient descent (≈ 1 line of code)
        parameters, grads, costs = optimize(w , b , X_train , Y_train , num_iterations , learning_rate , print_cost=False)

        # Retrieve parameters w and b from dictionary "parameters"
        w = parameters["w"]
        b = parameters["b"]

        # Predict test/train set examples (≈ 2 lines of code)
        Y_prediction_test = predict(w , b , X_test)
        Y_prediction_train = predict(w , b , X_train)

        ### END CODE HERE ###

        # Print train/test Errors
        print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100))
        print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100))

        d = {"costs": costs,
             "Y_prediction_test": Y_prediction_test,
             "Y_prediction_train": Y_prediction_train,
             "w": w,
             "b": b,
             "learning_rate": learning_rate,
             "num_iterations": num_iterations}

        return d

下面是调用这个函数来训练的例子:

d = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 10000, learning_rate = 0.001, print_cost = True)

训练完毕,我们来看看准确率

print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100))
print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100))

结果是这样的:


结果

现在我们来看看代价函数曲线(代码长这样):

costs = np.squeeze(d['costs'])
plt.plot(costs)
plt.ylabel('cost')
plt.xlabel('iterations (per hundreds)')
plt.title("Learning rate =" + str(d["learning_rate"]))
plt.show()

图是这样的(这里的学习速率是0.001,迭代次数10000):


图片

下面来看看学习速率的选择(先上代码):

learning_rates = [0.01, 0.001, 0.0001]#定义一个有三个值的数组,这里只是给你看方法,实际上的取值是有方法的(在机器学习里)
models = {}
for i in learning_rates:
    print ("learning rate is: " + str(i))
    models[str(i)] = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 1500, learning_rate = i, print_cost = False)
    print ('\n' + "-------------------------------------------------------" + '\n')

for i in learning_rates:
    plt.plot(np.squeeze(models[str(i)]["costs"]), label= str(models[str(i)]["learning_rate"]))

plt.ylabel('cost')
plt.xlabel('iterations')

legend = plt.legend(loc='upper center', shadow=True)
frame = legend.get_frame()
frame.set_facecolor('0.90')
plt.show()
#通过图像的发现,三个学习速率中,0.001是最好的(好吧,如果不管前面蓝色的波动,0.01或许也不错,不过,你会发现训练集的误差已经很小了,但验证集误差却很大,存在过拟合情况,所以用0.01并不会减小验证集的误差)

下面是图片


图片

然后学习率对应的准确率如下:


图片

最后,来点有趣的,用自己的图

现在用自己的图像玩玩,1表示预测是猫,0表示不是

## START CODE HERE ## (PUT YOUR IMAGE NAME)
my_image = "my_image2.jpg"   # change this to the name of your image file
## END CODE HERE ##
# ​
# We preprocess the image to fit your algorithm.
fname = "images/" + my_image
image = np.array(ndimage.imread(fname, flatten=False))
my_image = scipy.misc.imresize(image, size=(num_px,num_px)).reshape((1, num_px*num_px*3)).T
my_predicted_image = predict(d["w"], d["b"], my_image)

plt.imshow(image)
print("y = " + str(np.squeeze(my_predicted_image)) + ", your algorithm predicts a \"" + classes[int(np.squeeze(my_predicted_image)),].decode("utf-8") +  "\" picture.")

图长这样:


图片

然后判断是:


图片

我还试了一张埃菲尔铁塔的,判断为不是猫,感觉还不错。。。(好吧,其实看识别率还挺低),这里还缺少了一个正规化来防止过拟合(并且个人感觉,这个一定overfitting了,因为训练样本准确率非常高,而测试样本准确率却很低),防止过拟合将在下次来实现

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,921评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,635评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,393评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,836评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,833评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,685评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,043评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,694评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,671评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,670评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,779评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,424评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,027评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,984评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,214评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,108评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,517评论 2 343

推荐阅读更多精彩内容