吴恩达deep_learning_week2_logistic回归
标签: 机器学习深度学习
这是吴恩达深度学习里的第一次作业
实现logistic回归
1. 先导入包
import numpy as np
import matplotlib.pyplot as plt
import h5py
import scipy
from PIL import Image
import pylab
from scipy import ndimage
from lr_utils import load_dataset #这个是里面的一个导入数据的py文件
2. 导入数据,再显示一张图片看看效果
导入数据代码如下:
# Loading the data (cat/non-cat)
train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset()
#分别为训练集x 209个,训练集y 209个,测试集x 50个,测试集y 50个
这是一张图片
#这时输出上面这张图的代码
index = 19
plt.imshow(train_set_x_orig[index])
pylab.show()
print ("y = " + str(train_set_y[:, index]) + ", it's a '" + classes[np.squeeze(train_set_y[:, index])].decode("utf-8") + "' picture.")
之后会让你看看导入数据的维数,代码如下:
### START CODE HERE ### (≈ 3 lines of code)
m_train = train_set_x_orig.shape[0]
m_test = test_set_x_orig.shape[0]
num_px = train_set_x_orig.shape[1]
### END CODE HERE ###
print ("Number of training examples: m_train = " + str(m_train))
print ("Number of testing examples: m_test = " + str(m_test))
print ("Height/Width of each image: num_px = " + str(num_px))
print ("Each image is of size: (" + str(num_px) + ", " + str(num_px) + ", 3)")
print ("train_set_x shape: " + str(train_set_x_orig.shape))
print ("train_set_y shape: " + str(train_set_y.shape))
print ("test_set_x shape: " + str(test_set_x_orig.shape))
print ("test_set_y shape: " + str(test_set_y.shape))
结果显示是这样:
3. 现在可以开始写函数了
首先把训练数据的64643的矩阵变化为向量,代码如下:
### START CODE HERE ### (≈ 2 lines of code)
train_set_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T
test_set_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T
###现在处理好了图像,将其全部向量化了
将原来的四维(样本个数,图片横,竖,RGB)变为二维(样本个数,其他所有)
然后现在开始归一化
#现在开始归一化,将RGB里的0-255全部变为0-1(除以255)
train_set_x = train_set_x_flatten/255.
test_set_x = test_set_x_flatten/255.
现在可以开始写各种函数了:
sogmoid函数
def sigmoid(z):
# """
# Compute the sigmoid of z
#
# Arguments:
# z -- A scalar or numpy array of any size.
#
# Return:
# s -- sigmoid(z)
# """
### START CODE HERE ### (≈ 1 line of code)
s=1./(1.+ np.exp(-z))
### END CODE HERE ###
return s
随机初始化w和b的函数
def initialize_with_zeros(dim):
# """
# This function creates a vector of zeros of shape (dim, 1) for w and initializes b to 0.
#
# Argument:
# dim -- size of the w vector we want (or number of parameters in this case)
#
# Returns:
# w -- initialized vector of shape (dim, 1)
# b -- initialized scalar (corresponds to the bias)
# """
### START CODE HERE ### (≈ 1 line of code)
w = np.zeros((dim, 1))
b = 0
### END CODE HERE ###
assert (w.shape == (dim, 1))
assert (isinstance(b, float) or isinstance(b, int))
return w, b
现在来前向和反向传播
def propagate(w, b, X, Y):
# """
# Implement the cost function and its gradient for the propagation explained above
#
# Arguments:
# w -- weights, a numpy array of size (num_px * num_px * 3, 1)
# b -- bias, a scalar
# X -- data of size (num_px * num_px * 3, number of examples)
# Y -- true "label" vector (containing 0 if non-cat, 1 if cat) of size (1, number of examples)
#
# Return:
# cost -- negative log-likelihood cost for logistic regression
# dw -- gradient of the loss with respect to w, thus same shape as w
# db -- gradient of the loss with respect to b, thus same shape as b
#
# Tips:
# - Write your code step by step for the propagation. np.log(), np.dot()
# """
m = X.shape[1]
# FORWARD PROPAGATION (FROM X TO COST)
### START CODE HERE ### (≈ 2 lines of code)
A = sigmoid(np.dot(w.T , X) + b) # compute activation
cost = np.sum(Y * np.log(A) + (1-Y) * np.log(1-A))/(-m) # compute cost
### END CODE HERE ###
# BACKWARD PROPAGATION (TO FIND GRAD)
### START CODE HERE ### (≈ 2 lines of code)
dw = np.dot(X , (A-Y).T)/m
db = np.sum(A-Y)/m
### END CODE HERE ###
assert (dw.shape == w.shape)
assert (db.dtype == float)
cost = np.squeeze(cost)
assert (cost.shape == ())
grads = {"dw": dw,
"db": db}
return grads, cost
更新w和b的函数
def optimize(w, b, X, Y, num_iterations, learning_rate, print_cost=False):
# """
# This function optimizes w and b by running a gradient descent algorithm
#
# Arguments:
# w -- weights, a numpy array of size (num_px * num_px * 3, 1)
# b -- bias, a scalar
# X -- data of shape (num_px * num_px * 3, number of examples)
# Y -- true "label" vector (containing 0 if non-cat, 1 if cat), of shape (1, number of examples)
# num_iterations -- number of iterations of the optimization loop
# learning_rate -- learning rate of the gradient descent update rule
# print_cost -- True to print the loss every 100 steps
#
# Returns:
# params -- dictionary containing the weights w and bias b
# grads -- dictionary containing the gradients of the weights and bias with respect to the cost function
# costs -- list of all the costs computed during the optimization, this will be used to plot the learning curve.
#
# Tips:
# You basically need to write down two steps and iterate through them:
# 1) Calculate the cost and the gradient for the current parameters. Use propagate().
# 2) Update the parameters using gradient descent rule for w and b.
# """
costs = []
for i in range(num_iterations):
# Cost and gradient calculation (≈ 1-4 lines of code)
### START CODE HERE ###
grads, cost = propagate(w , b , X , Y)
### END CODE HERE ###
# Retrieve derivatives from grads
dw = grads["dw"]
db = grads["db"]
# update rule (≈ 2 lines of code)
### START CODE HERE ###
w = w - learning_rate * dw
b = b - learning_rate * db
### END CODE HERE ###
# Record the costs
if i % 100 == 0:
costs.append(cost)
# Print the cost every 100 training examples
# 每100次输出一个代价函数
if print_cost and i % 100 == 0:
print("Cost after iteration %i: %f" % (i, cost))
params = {"w": w,
"b": b}
grads = {"dw": dw,
"db": db}
return params, grads, costs
现在这是预测函数
def predict(w, b, X):
# '''
# Predict whether the label is 0 or 1 using learned logistic regression parameters (w, b)
#
# Arguments:
# w -- weights, a numpy array of size (num_px * num_px * 3, 1)
# b -- bias, a scalar
# X -- data of size (num_px * num_px * 3, number of examples)
#
# Returns:
# Y_prediction -- a numpy array (vector) containing all predictions (0/1) for the examples in X
# '''
m = X.shape[1]
Y_prediction = np.zeros((1, m))
w = w.reshape(X.shape[0], 1)
# Compute vector "A" predicting the probabilities of a cat being present in the picture
### START CODE HERE ### (≈ 1 line of code)
A = np.dot(w.T , X)
### END CODE HERE ###
for i in range(A.shape[1]):
# Convert probabilities A[0,i] to actual predictions p[0,i]
### START CODE HERE ### (≈ 4 lines of code)
if (A[0, i] > 0.5):
Y_prediction[0][i] = 1
else:
Y_prediction[0][i] = 0
### END CODE HERE ###
assert (Y_prediction.shape == (1, m))
return Y_prediction
4.现在终于可以开始真正的训练参数了(之前都是用的测试,现在开始用真正的图片数据来训练)
代码如下:
#现在开始将上面的这些函数整合起来
# GRADED FUNCTION: model
print("===============终于,开始处理图像了=========================")
def model(X_train, Y_train, X_test, Y_test, num_iterations=10000, learning_rate=0.01, print_cost=False):
# """
# Builds the logistic regression model by calling the function you've implemented previously
#
# Arguments:
# X_train -- training set represented by a numpy array of shape (num_px * num_px * 3, m_train)
# Y_train -- training labels represented by a numpy array (vector) of shape (1, m_train)
# X_test -- test set represented by a numpy array of shape (num_px * num_px * 3, m_test)
# Y_test -- test labels represented by a numpy array (vector) of shape (1, m_test)
# num_iterations -- hyperparameter representing the number of iterations to optimize the parameters
# learning_rate -- hyperparameter representing the learning rate used in the update rule of optimize()
# print_cost -- Set to true to print the cost every 100 iterations
#
# Returns:
# d -- dictionary containing information about the model.
# """
### START CODE HERE ###
# initialize parameters with zeros (≈ 1 line of code)
w, b = initialize_with_zeros(X_train.shape[0])
# Gradient descent (≈ 1 line of code)
parameters, grads, costs = optimize(w , b , X_train , Y_train , num_iterations , learning_rate , print_cost=False)
# Retrieve parameters w and b from dictionary "parameters"
w = parameters["w"]
b = parameters["b"]
# Predict test/train set examples (≈ 2 lines of code)
Y_prediction_test = predict(w , b , X_test)
Y_prediction_train = predict(w , b , X_train)
### END CODE HERE ###
# Print train/test Errors
print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100))
print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100))
d = {"costs": costs,
"Y_prediction_test": Y_prediction_test,
"Y_prediction_train": Y_prediction_train,
"w": w,
"b": b,
"learning_rate": learning_rate,
"num_iterations": num_iterations}
return d
下面是调用这个函数来训练的例子:
d = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 10000, learning_rate = 0.001, print_cost = True)
训练完毕,我们来看看准确率
print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100))
print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100))
结果是这样的:
现在我们来看看代价函数曲线(代码长这样):
costs = np.squeeze(d['costs'])
plt.plot(costs)
plt.ylabel('cost')
plt.xlabel('iterations (per hundreds)')
plt.title("Learning rate =" + str(d["learning_rate"]))
plt.show()
图是这样的(这里的学习速率是0.001,迭代次数10000):
下面来看看学习速率的选择(先上代码):
learning_rates = [0.01, 0.001, 0.0001]#定义一个有三个值的数组,这里只是给你看方法,实际上的取值是有方法的(在机器学习里)
models = {}
for i in learning_rates:
print ("learning rate is: " + str(i))
models[str(i)] = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 1500, learning_rate = i, print_cost = False)
print ('\n' + "-------------------------------------------------------" + '\n')
for i in learning_rates:
plt.plot(np.squeeze(models[str(i)]["costs"]), label= str(models[str(i)]["learning_rate"]))
plt.ylabel('cost')
plt.xlabel('iterations')
legend = plt.legend(loc='upper center', shadow=True)
frame = legend.get_frame()
frame.set_facecolor('0.90')
plt.show()
#通过图像的发现,三个学习速率中,0.001是最好的(好吧,如果不管前面蓝色的波动,0.01或许也不错,不过,你会发现训练集的误差已经很小了,但验证集误差却很大,存在过拟合情况,所以用0.01并不会减小验证集的误差)
下面是图片
然后学习率对应的准确率如下:
最后,来点有趣的,用自己的图
现在用自己的图像玩玩,1表示预测是猫,0表示不是
## START CODE HERE ## (PUT YOUR IMAGE NAME)
my_image = "my_image2.jpg" # change this to the name of your image file
## END CODE HERE ##
#
# We preprocess the image to fit your algorithm.
fname = "images/" + my_image
image = np.array(ndimage.imread(fname, flatten=False))
my_image = scipy.misc.imresize(image, size=(num_px,num_px)).reshape((1, num_px*num_px*3)).T
my_predicted_image = predict(d["w"], d["b"], my_image)
plt.imshow(image)
print("y = " + str(np.squeeze(my_predicted_image)) + ", your algorithm predicts a \"" + classes[int(np.squeeze(my_predicted_image)),].decode("utf-8") + "\" picture.")
图长这样:
然后判断是:
我还试了一张埃菲尔铁塔的,判断为不是猫,感觉还不错。。。(好吧,其实看识别率还挺低),这里还缺少了一个正规化来防止过拟合(并且个人感觉,这个一定overfitting了,因为训练样本准确率非常高,而测试样本准确率却很低),防止过拟合将在下次来实现