归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序若将两个有序表合并成一个有序表,称为2-路归并。
算法描述
- 把长度为Ñ的输入序列分成两个长度为N / 2的子序列;
- 对这两个子序列分别采用归并排序;
-
将两个排序好的子序列合并成一个最终的排序序列。
代码实现
# 归并排序
#这是合并的函数
# 将序列L[first...mid]与序列L[mid+1...last]进行合并
def mergearray(L,first,mid,last,temp):
#对i,j,k分别进行赋值
i,j,k = first,mid+1,0
#当左右两边都有数时进行比较,取较小的数
while (i <= mid) and (j <= last):
if L[i] <= L[j]:
temp[k] = L[i]
i = i+1
k = k+1
else:
temp[k] = L[j]
j = j+1
k = k+1
#如果左边序列还有数
while (i <= mid):
temp[k] = L[i]
i = i+1
k = k+1
#如果右边序列还有数
while (j <= last):
temp[k] = L[j]
j = j+1
k = k+1
#将temp当中该段有序元素赋值给L待排序列使之部分有序
for x in range(0,k):
L[first+x] = temp[x]
# 这是分组的函数
def merge_sort(L,first,last,temp):
if first < last:
mid = (int)((first + last) / 2)
#使左边序列有序
merge_sort(L,first,mid,temp)
#使右边序列有序
merge_sort(L,mid+1,last,temp)
#将两个有序序列合并
mergearray(L,first,mid,last,temp)
# 归并排序的函数
def merge_sort_array(L):
#声明一个长度为len(L)的空列表
temp = len(L)*[None]
#调用归并排序
merge_sort(L,0,len(L)-1,temp)
算法表现
归并排序是一种稳定的排序方法。和选择排序一样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,因为始终都是O(nlogn)的时间复杂度代价是需要额外的内存空间。