缓冲区
前面的例子没有超出标准的读/写过程种类,在原来的 I/O 中可以像在 NIO 中一样容易地实现这样的标准读写过程。缓冲区有一些更复杂的方面,比如缓冲区分配、包装和分片。以及NIO 带给 Java 平台的一些新功能。
缓冲区分配和包装
创建缓冲区,必须分配它一定的空间。我们使用静态方法 allocate()
来分配缓冲区:
ByteBuffer buffer = ByteBuffer.allocate( 1024 );
allocate() 方法分配一个具有指定大小的底层数组,并将它包装到一个缓冲区对象中 ― 在本例中是一个 ByteBuffer。
还可以将一个现有的数组转换为缓冲区,如下所示:
byte array[] = new byte[1024];
ByteBuffer buffer = ByteBuffer.wrap( array );
本例使用了 wrap() 方法将一个数组包装为缓冲区。必须非常小心地进行这类操作。一旦完成包装,底层数据就可以通过缓冲区或者直接访问。
缓冲区分片
slice() 让我想到了Golang的slice 呵呵
方法根据现有的缓冲区创建一种 子缓冲区 。也就是说,它创建一个新的缓冲区,新缓冲区与原来的缓冲区的一部分共享数据。
使用例子可以最好地说明这点。让我们首先创建一个长度为 10 的 ByteBuffer:
ByteBuffer buffer = ByteBuffer.allocate( 10 );
然后使用数据来填充这个缓冲区,在第 n 个槽中放入数字 n:
for (int i=0; i<buffer.capacity(); ++i) {
buffer.put( (byte)i );
}
现在我们对这个缓冲区分片,以创建一个包含槽 3 到槽 6 的子缓冲区。在某种意义上,子缓冲区就像原来的缓冲区中的一个窗口。窗口的起始和结束位置通过设置 position 和 limit 值来指定,然后调用 Buffer 的 slice() 方法:
buffer.position( 3 );
buffer.limit( 7 );
ByteBuffer slice = buffer.slice();
片段是缓冲区的子缓冲区。不过,片段和缓冲区共享同一个底层数据数组。
缓冲区分片和数据共享
我们已经创建了原缓冲区的子缓冲区,并且我们知道缓冲区和子缓冲区共享同一个底层数据数组。让我们看看这意味着什么。
我们遍历子缓冲区,将每一个元素乘以11来改变它。例如,5 会变成 55。
for (int i=0; i<slice.capacity(); ++i) {
byte b = slice.get( i );
b *= 11;
slice.put( i, b );
}
最后,再看一下原缓冲区中的内容:
buffer.position( 0 );
buffer.limit( buffer.capacity() );
while (buffer.remaining()>0) {
System.out.println( buffer.get() );
}
测试代码:
@Test
public void testSlice() {
ByteBuffer buffer = ByteBuffer.allocate(10);
for (int i=0; i<10; i++) {
buffer.put((byte) i);
}
// 创建分片
buffer.position(3);
buffer.limit(7);
ByteBuffer slice = buffer.slice();
// 操作分片数据
for (int i=0; i<slice.capacity(); ++i) {
byte b = slice.get(i);
b *= 11;
slice.put( i, b );
}
// 遍历缓冲区
buffer.position( 0 );
buffer.limit( buffer.capacity() );
while (buffer.remaining()>0) {
System.out.println( buffer.get() );
}
}
只读缓冲区
只读缓冲区非常简单 ― 可以读取它们,但是不能向它们写入。可以通过调用缓冲区的asReadOnlyBuffer()
方法,将任何常规缓冲区转换为只读缓冲区,这个方法返回一个与原缓冲区完全相同的缓冲区(并与其共享数据),只不过它是只读的。
只读缓冲区对于保护数据很有用。在将缓冲区传递给某个对象的方法时,您无法知道这个方法是否会修改缓冲区中的数据。创建一个只读的缓冲区可以保证该缓冲区不会被修改。
但是,不能将只读的缓冲区转换为可写的缓冲区。
直接和间接缓冲区
另一种有用的缓冲区是直接缓冲区。
-
直接缓冲区 是为加快 I/O 速度,而以一种特殊的方式分配其内存的缓冲区。
实际上,直接缓冲区的准确定义是与实现相关的。Sun 的文档是这样描述直接缓冲区的:
给定一个直接字节缓冲区,Java 虚拟机将尽最大努力直接对它执行本机 I/O 操作。也就是说,它会在每一次调用底层操作系统的本机 I/O 操作之前(或之后),尝试避免将缓冲区的内容拷贝到一个中间缓冲区中(或者从一个中间缓冲区中拷贝数据)。
内存映射文件 I/O
内存映射文件 I/O 是一种读和写文件数据的方法,它可以比常规的基于流或者基于通道的 I/O 快得多。
内存映射文件 I/O 是通过使文件中的数据神奇般地出现为内存数组的内容来完成的。这其初听起来似乎不过就是将整个文件读到内存中,但是事实上并不是这样。一般来说,只有文件中实际读取或者写入的部分才会送入(或者 映射)到内存中。
内存映射并不真的多么神奇。现代操作系统一般根据需要将文件的部分映射为内存的部分,从而实现文件系统。Java 内存映射机制不过是在底层操作系统中可以采用这种机制时,提供了对该机制的访问。
尽管创建内存映射文件相当简单,但是向它写入可能是危险的。仅只是改变数组的单个元素这样的简单操作,就可能会直接修改磁盘上的文件。修改数据与将数据保存到磁盘是没有分开的。
在下面的例子中,我们要将一个 FileChannel (它的全部或者部分)映射到内存中。为此我们将使用 FileChannel.map() 方法。下面代码行将文件的前 1024 个字节映射到内存中:
MappedByteBuffer mbb = fc.map( FileChannel.MapMode.READ_WRITE, 0, 1024 );
map() 方法返回一个 MappedByteBuffer,它是 ByteBuffer 的子类。因此,您可以像使用其他任何 ByteBuffer 一样使用新映射的缓冲区,操作系统会在需要时负责执行行映射。