阿里数据仓库搭建实践分享

内容来源:2017年7月8日,阿里云高级技术专家后稷在“阿里云—数据化运营实践分享【7上海站】”进行《阿里数据仓库搭建实践分享》演讲分享。IT大咖说(ID:itdakashuo)作为独家视频合作方,经主办方和讲者审阅授权发布。

阅读字数:1605 | 4分钟阅读

嘉宾演讲视频回顾及PPT,请点击链接:http://t.cn/RgN0RsJ

摘要

数据仓库,是为企业所有级别的决策制定过程,提供所有类型数据支持的战略集合。它是单个数据存储,出于分析性报告和决策支持目的而创建。为需要业务智能的企业,提供指导业务流程改进、监视时间、成本、质量以及控制。

基础

搭建数据仓库主要需要建模的能力,还要沉淀一些维度表。除此之外还要不断地挖掘数据,来把模型建得更好。

应该做的几件事

简介

在得到活动数据后,要把这些数据投入到数据仓库中,并且做以下几件事:

用户或者实体的识别需要统一。

PC和无线端的数据打通。

围绕实体和跨业务间的事实数据打通。

重要事实表的维度冗余。

用户画像或客户画像。

有怎样的市场价值

目前我们已经积累了很多用户数据,这些数据都是非常宝贵的资源,我们基于这些数据做了一些开发利用。

搭建了数据仓库就可以把用户分析的数据用来做个性化推荐、定向营销、风控等等。

数据仓库的市场价值在于需求场景驱动的集市层建设,各集市之间垂直构建。

集市层深度挖掘数据价值,并需要能够快速试错。

以阿里金融在后台大数据中的运行过程为例,我们会从关系数据库中把用户相关的所有数据全部导入到MaxCompute中,然后记录用户的一些操作日志,比如登录过哪些网站、浏览过哪些商品,有怎样的喜好。还有一些其它数据,可能是从其它系统过来的。我们把这些数据做一个汇总分析,最终把这些数据导出到业务系统中,也有一个统计服务。这样当用户来进行征信贷款的时候,我们很快就可以定位到这个用户是否符合征信要求,并迅速进行审批。

如上图所示,DataWorks主要依赖于MaxCompute。右边是阿里云目前提供的一些基础组件。集成开发环境这一块是可视化的,比如在工作流设计器上做工作流和应用调度,在里面进行配置。

我们提供了一个Web页面的代码编辑器,支持MR、SQL等等。还有一个代码调试器,写过的代码可以直接在这里进行调试。有了代码仓库就能保留好几个版本,并预览之前保存的版本。

调度分为资源调度和工作流调度两部分。工作流调度与前面的工作流是息息相关的,在工作流设计器中设计成一个工作流的话,底层的调度会按照顺序进行调度。资源调度和底层网关集群的资源是相关的。

数据治理中主要是任务监控和数据质量。

大数据开发核心流程

当我们接到一个需求,首先会进行需求分析,然后做工作流设计,比如这个任务是什么时候跑的、依赖于哪些业务。工作流设计完成后进行数据采集和数据同步。接下去就是数据开发,我们提供了WEB-IDE,支持SQL、MR、SHELL和  PYTHON等。然后我们提供了冒烟测试的场景,测试完成后发布到线上,让它每天定时进行自动调度,并进行数据质量监控。以上步骤都完成后,就能把我们的数据环流到业务系统库,或者用QuickBI、DataV这些工具进行页面展现。

我们设计的任务是离线的,每天会在12点的时候把设计的任务变成一个实例快照。目前我们的任务依赖在业内也是最先进的。

现在最常见的需求就是每天有日报,每周要写周报,每月要写月报。为了节省资源,就可以使用日报的数据直接转成周报或月报。

线上系统在每天6点的时候要保证数据已经回笼到业务系统,系统要开始使用了。

如上图所示,假设有D和E两个任务,它们依赖于B和A。任务D的运行时间是1.5小时,E是2小时。我们必须确保B每天在4点之前把B的任务运行完成,一般正常运行时间是2小时。那就要保证A每天任务完成的时间不晚于2点。如果A的运行时间是10分钟,到1点的时候发现A的任务失败了,这时就能计算出A还剩下多少余量,我们可以进行人工监督排查。在1:50之前人工介入,从而保证任务D和E能在6点前准时产出。

总结

如图所示,MaxCompute是图上小人的“心脏”,所有运行的任务都在MaxCompute里面。调度是数据架构的“大脑”。“眼睛”是数据监控,目前在数据架构平台上它还是一个“近视眼”,还没有正式推出。数据集成就像两只“手”,不停地从其它地方搬运数据。底层的开发环境和运维中心就像两条“腿”,保证整个数据架构平台走得更远。而数据质量就像是一个“人体健康中心”,也就是数据质量的监控。

我今天的分享就到这里,感谢聆听!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,590评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,808评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,151评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,779评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,773评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,656评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,022评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,678评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,038评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,756评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,411评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,005评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,973评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,053评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,495评论 2 343

推荐阅读更多精彩内容