深度学习笔记2:反向传播算法

1、损失函数

损失函数在统计学中是一种衡量损失和误差程度的函数,它一般包括损失项(loss term)和正则项(regularization term)

损失项

损失项比较常见的有平方损失

,常用在回归问题;以及对数损失函数

,常用在分类问题。

正则项

加入正则项目的是减小权重的幅度,防止过度拟合。常用的有L1-regularization和L2-regularization。
关于损失函数发现一篇文章讲的比较详细,看一下能比较详细的了解损失函数:点击打开链接

2、BackPropagation算法

BackPropagation算法是多层神经网络的训练中举足轻重的算法,简单的理解,它就是复合函数的链式法则。由于后面我的网络中会用到对数损失函数,所以在这里我们使用平方损失函数。对于单个样例,其平方损失函数为:


对于给定一个包含m个样例的数据集,我们可以定义整体代价函数为:



和直线的拟合类似,深度学习也有一个目标函数,通过这个目标函数我们可以知道参数为何值时对我们来说才是一组“好”的参数,这个函数就是前边提到的损失函数。训练的过程就是通过每一次迭代对网络中参数进行更新,来使损失函数的值达到最小(下图中α为学习率)。

虽然一般损失函数都是非凸的,含有局部最小值,但实际使用中一般都不会下降到局部最小值。

3、利用BackPropagation算法计算偏导数

由上一节可知,我们只需求出每一层的

即可完成该层的权值和偏置的更新。

BP算法的整体思路如下:对于每个给定的训练样本,首先进行前向计算,计算出网络中每一层的激活值和网络的输出。对于最后一层(输出层),我们可以直接计算出网络的输出值与已经给出的标签值(label)直接的差距,我们将这个值定义为残差δ。对于输出层之前的隐藏层L,我们将根据L+1层各节点的加权平均值来计算第L层的残差。

插入一些我个人对BP算法的一点比较容易理解的解释(如有错误请指出):在反向传播过程中,若第x层的a节点通过权值W对x+1层的b节点有贡献,则在反向传播过程中,梯度通过权值W从b节点传播回a节点。不管下面的公式推导,还是后面的卷积神经网络,在反向传播的过程中,都是遵循这样的一个规律。

反向传播的具体步骤如下:
(1)根据输入,计算出每一层的激活值。
(2)对于输出层,我们使用如下公式计算每个单元的残差:



(3)对于输出层之前的每一层,按照如下公式计算每一层的残差:



(4)由残差计算每一层的偏导数:

(5)最后,使用偏导数更新权值和偏置。
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,937评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,503评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,712评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,668评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,677评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,601评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,975评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,637评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,881评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,621评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,710评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,387评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,971评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,947评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,189评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,805评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,449评论 2 342

推荐阅读更多精彩内容