es使用与原理6 -- 聚合分析剖析

易并行聚合算法,三角选择原则,近似聚合算法

有些聚合分析的算法,是很容易就可以并行的,比如说max


有些聚合分析的算法,是不好并行的,比如说,count(distinct),并不是说,在每个node上,直接就出一些distinct value,就可以的,因为数据可能会很多,假设图中的协调节点3百万个数据去重后还剩下100万distinct的数据,那么内存需要来存储这100万条数据,这是不可能的


image.png

es会采取近似聚合的方式,就是采用在每个node上进行近估计的方式,得到最终的结论,cuont(distcint),100万,1050万/95万 --> 5%左右的错误率
近似估计后的结果,不完全准确,但是速度会很快,一般会达到完全精准的算法的性能的数十倍

# es,去重,cartinality metric,对每个bucket中的指定的field进行去重,取去重后的count,类似于count(distcint)

GET /tvs/sales/_search
{
  "size" : 0,
  "aggs" : {
      "months" : {
        "date_histogram": {
          "field": "sold_date",
          "interval": "month"
        },
        "aggs": {
          "distinct_colors" : {
              "cardinality" : {
                "field" : "brand"
              }
          }
        }
      }
  }
}

precision_threshold优化准确率和内存开销

GET /tvs/sales/_search
{
    "size" : 0,
    "aggs" : {
        "distinct_brand" : {
            "cardinality" : {
              "field" : "brand",
              "precision_threshold" : 100 
            }
        }
    }
}

brand去重,如果brand的unique value,在100个以内,小米,长虹,三星,TCL,HTL。。。
在多少个unique value以内,cardinality,几乎保证100%准确
cardinality算法,会占用precision_threshold * 8 byte 内存消耗,100 * 8 = 800个字节
占用内存很小。。。而且unique value如果的确在值以内,那么可以确保100%准确
100,数百万的unique value,错误率在5%以内
precision_threshold,值设置的越大,占用内存越大,1000 * 8 = 8000 / 1000 = 8KB,可以确保更多unique value的场景下,100%的准确
field,去重,count,这时候,unique value,10000,precision_threshold=10000,10000 * 8 = 80000个byte,80KB

doc value正排索引
搜索+聚合 是怎么实现的?
假设是倒排索引实现的

GET /test_index/test_type/_search 
{
    "query": {
        "match": {
            "search_field": "test"
        }
    },
    "aggs": {
        "group_by_agg_field": {
            "terms": {
                "field": "agg_field"
            }
        }
    }
}

倒排索引来实现是非常不现实的,因为我们搜索的那个字段search_field 有可能是分词的,这就需要去扫描整个索引才能实现聚合操作,效率是及其低下的。
正排索引结构:
doc2: agg1
doc3: agg2
1万个doc --> 搜 -> 可能跟搜索到10000次,就搜索完了,就找到了1万个doc的聚合field的所有值了,然后就可以执行分组聚合操作了
doc value原理

1、doc value原理

(1)index-time生成

PUT/POST的时候,就会生成doc value数据,也就是正排索引

(2)核心原理与倒排索引类似

正排索引,也会写入磁盘文件中,然后呢,os cache先进行缓存,以提升访问doc value正排索引的性能
如果os cache内存大小不足够放得下整个正排索引,doc value,就会将doc value的数据写入磁盘文件中

(3)性能问题:给jvm更少内存,64g服务器,给jvm最多16g

es官方是建议,es大量是基于os cache来进行缓存和提升性能的,不建议用jvm内存来进行缓存,那样会导致一定的gc开销和oom问题
给jvm更少的内存,给os cache更大的内存
64g服务器,给jvm最多16g,几十个g的内存给os cache
os cache可以提升doc value和倒排索引的缓存和查询效率

2、column压缩

doc1: 550
doc2: 550
doc3: 500

合并相同值,550,doc1和doc2都保留一个550的标识即可
(1)所有值相同,直接保留单值
(2)少于256个值,使用table encoding模式:一种压缩方式
(3)大于256个值,看有没有最大公约数,有就除以最大公约数,然后保留这个最大公约数

重点:
对分词的field,直接执行聚合操作,会报错,大概意思是说,你必须要打开fielddata,然后将正排索引数据加载到内存中,才可以对分词的field执行聚合操作,而且会消耗很大的内存
先修改 字段的fielddata属性为true,再查 就能查找到数据

POST /test_index/_mapping/test_type 
{
  "properties": {
    "test_field": {
      "type": "text",
      "fielddata": true
    }
  }
}

GET /test_index/test_type/_search 
{
  "size": 0, 
  "aggs": {
    "group_by_test_field": {
      "terms": {
        "field": "test_field"
      }
    }
  }
}

当然,我们也可以使用内置field(keyword)不分词,对string field进行聚合,如果对不分词的field执行聚合操作,直接就可以执行,不需要设置fieldata=true

GET /test_index/test_type/_search 
{
  "size": 0,
  "aggs": {
    "group_by_test_field": {
      "terms": {
        "field": "test_field.keyword"
      }
    }
  }
}

分词field+fielddata的工作原理

doc value --> 不分词的所有field,可以执行聚合操作 --> 如果你的某个field不分词,那么在index-time,就会自动生成doc value --> 针对这些不分词的field执行聚合操作的时候,自动就会用doc value来执行
分词field,是没有doc value的。。。在index-time,如果某个field是分词的,那么是不会给它建立doc value正排索引的,因为分词后,占用的空间过于大,所以默认是不支持分词field进行聚合的
分词field默认没有doc value,所以直接对分词field执行聚合操作,是会报错的

对于分词field,必须打开和使用fielddata,完全存在于纯内存中。。。结构和doc value类似。。。如果是ngram或者是大量term,那么必将占用大量的内存。。。

如果一定要对分词的field执行聚合,那么必须将fielddata=true,然后es就会在执行聚合操作的时候,现场将field对应的数据,建立一份fielddata正排索引,fielddata正排索引的结构跟doc value是类似的,
但是只会讲fielddata正排索引加载到内存中来,然后基于内存中的fielddata正排索引执行分词field的聚合操作

如果直接对分词field执行聚合,报错,才会让我们开启fielddata=true,告诉我们,会将fielddata uninverted index,正排索引,加载到内存,会耗费内存空间

为什么fielddata必须在内存?因为大家自己思考一下,分词的字符串,需要按照term进行聚合,需要执行更加复杂的算法和操作,如果基于磁盘和os cache,那么性能会很差

我们是不是可以预先生成加载fielddata到内存中来???
query-time的fielddata生成和加载到内存,变为index-time,建立倒排索引的时候,会同步生成fielddata并且加载到内存中来,这样的话,对分词field的聚合性能当然会大幅度增强

POST /test_index/_mapping/test_type
{
  "properties": {
    "test_field": {
      "type": "string",
      "fielddata": {
        "loading" : "eager" 
      }
    }
  }
}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,126评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,254评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,445评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,185评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,178评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,970评论 1 284
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,276评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,927评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,400评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,883评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,997评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,646评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,213评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,204评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,423评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,423评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,722评论 2 345

推荐阅读更多精彩内容