tensorflow的基本用法(八)——dropout的作用

文章作者:Tyan
博客:noahsnail.com  |  CSDN  |  简书

本文主要是介绍tensorflow中dropout的作用,dropout主要是用来防止过拟合,即提供模型的泛化能力。

#!/usr/bin/env python
# _*_ coding: utf-8 _*_

import tensorflow as tf
from sklearn.datasets import load_digits
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import LabelBinarizer

# 加载数据 
digits = load_digits()
# 输入数据
X = digits.data
# 输出数据
y = digits.target
# 标签变换
y = LabelBinarizer().fit_transform(y)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.3)

# 创建一个神经网络层
def add_layer(input, in_size, out_size, layer_name, activation_function = None):
    """
    :param input:
        神经网络层的输入
    :param in_zize:
        输入数据的大小
    :param out_size:
        输出数据的大小
    :param layer_name
        神经网络层的名字
    :param activation_function:
        神经网络激活函数,默认没有
    """
    # 定义神经网络的初始化权重
    Weights = tf.Variable(tf.random_normal([in_size, out_size]))
    # 定义神经网络的偏置
    biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
    # 计算w*x+b
    W_mul_x_plus_b = tf.matmul(input, Weights) + biases
    # 进行dropout,可以注释和不注释来对比dropout的效果
#   W_mul_x_plus_b = tf.nn.dropout(W_mul_x_plus_b, keep_prob)
    # 根据是否有激活函数进行处理
    if activation_function is None:
        output = W_mul_x_plus_b
    else:
        output = activation_function(W_mul_x_plus_b)
    # 查看权重变化
    tf.summary.histogram(layer_name + '/output', output)
    return output


# 定义dropout的placeholder
keep_prob = tf.placeholder(tf.float32)
# 输入数据64个特征
xs = tf.placeholder(tf.float32, [None, 64])  # 8x8
ys = tf.placeholder(tf.float32, [None, 10])

# 添加隐藏层和输出层
l1 = add_layer(xs, 64, 50, 'l1', activation_function=tf.nn.tanh)
prediction = add_layer(l1, 50, 10, 'l2', activation_function=tf.nn.softmax)

# 计算loss
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction), reduction_indices=[1]))
# 存储loss
tf.summary.scalar('loss', cross_entropy)
# 神经网络训练
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
# 定义Session
sess = tf.Session()
# 收集所有的数据
merged = tf.summary.merge_all()
# 将数据写入到tensorboard中
train_writer = tf.summary.FileWriter("logs/train", sess.graph)
test_writer = tf.summary.FileWriter("logs/test", sess.graph)

# 根据tensorflow版本选择初始化函数
if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1:
    init = tf.initialize_all_variables()
else:
    init = tf.global_variables_initializer()
# 执行初始化
sess.run(init)
# 进行训练迭代
for i in range(500):
    # 执行训练,dropout为1-0.5=0.5
    sess.run(train_step, feed_dict={xs: X_train, ys: y_train, keep_prob: 0.5})
    if i % 50 == 0:
        # 记录损失
        train_result = sess.run(merged, feed_dict={xs: X_train, ys: y_train, keep_prob: 1})
        test_result = sess.run(merged, feed_dict={xs: X_test, ys: y_test, keep_prob: 1})
        train_writer.add_summary(train_result, i)
        test_writer.add_summary(test_result, i) 

执行结果如下:

  • 没有dropout
no_dropout

测试误差与训练误差的损失差的较大,说明模型更拟合训练数据。

  • 有dropout
dropout

测试误差与训练误差相差不大,说明模型泛化能力较好。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,482评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,377评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,762评论 0 342
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,273评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,289评论 5 373
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,046评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,351评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,988评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,476评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,948评论 2 324
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,064评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,712评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,261评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,264评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,486评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,511评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,802评论 2 345

推荐阅读更多精彩内容