hello,大家好,今天我们开一个新的专题,有关TCR数据分析的部分,这部分相对于转录组要难的多,我们今天来一个基础的,计算TCR的distance。有关TCRdist的知识,大家可以参考文献Quantifiable predictive features define epitope-specific T cell receptor repertoires,IF49分(nature)。有关TCR的基础知识,大家可以参考文章10X单细胞(10X空间转录组)TCR数据分析之TCR 内在调控潜力系统(TiRP)。好了,开始我们今天的分享:
今天我们就搞懂几个概念
(1)TCR distances
Weighted multi-CDR distances between TCRs were computed using (这个软件大家应该听说过,原本是TCRdist,发的文章是nature,这个软件对TCRdist进行了改进,软件主要用于TCR repertoire analysis and visualization),该软件包已扩展以适应 γδ TCR,当然,软件开发的部分我们不太关心,主要关心算法。
Briefly, the distance metric in this study is based on comparing TCR β-chain sequences.(β链的序列),The tcrdist3 default settings compare TCRs at the CDR1, CDR2, and CDR2.5 and CDR3 positions(当然,我们单细胞的数据只能比较CDR3区域的距离,不过也足够我们使用了).By default,IMGT aligned CDR1, CDR2, and CDR2.5 amino acids are inferred from TRVB gene names,(看来这里的序列指的是氨基酸序列),using the *01 allele sequences when allele level information is not available。The CDR3 junction sequences are trimmed 3 amino acids on the N-terminal side and 2 amino acids on the C-terminus, positions that are highly conserved and less crucial for mediation of antigen recognition(这个地方确实是研究的重点,单细胞其实我也推荐大家采用氨基酸序列进行分析) 。For two CDR3s with different lengths, a set of consecutive gaps are inserted at a position in the shorter sequence that minimizes the summed substitution penalties based on a BLOSUM62 substitution matrix(这个我们单细胞数据不用担心). Distances are then the weighted sum of substitution penalties across all CDRs, with the CDR3 penalty weighted three times that of the other CDRs. (距离是所有 CDR 的替换惩罚的加权总和,CDR3 惩罚的权重是其他 CDR 的三倍。 看来不替换,就没有距离)。
总而言之一句话,依据共享的序列特征来计算TCR之间的相互距离。我们会分析到下面的结果
(2)Optimized TCR-specific radius
既然有了TCR的距离分析,那么我们必然有一个TCR的特异性半径,半径内部的TCR序列,具有相同的特异性,这个概念,我们也需要看一看。
To find biochemically similar TCRs while maintaining a high level of specificity, we used the packages and to generate an appropriate set of unenriched antigen-naïve background TCRs.(首先纳入背景)。A background repertoire was created for each MIRA(一个TCR的数据库) set,with each consisting of two parts.First,we combined a set of 100,000 synthetic TCRs generated using the software OLGA(合成的TCR),whose TRBV- and TRBJ-gene frequencies match those in the antigen-enriched repertoire.(这是人工模拟抗原富集的TCR数据),Second we used 100,000 umbilical cord blood TCRs sampled evenly from 8 subjects(真实的数据),这种混合平衡了感兴趣的生化邻域附近的背景序列的密集采样与代表抗原幼稚库的常见 TCR 的广泛采样。We then adjust for the biased sampling by using the TRBV- and TRBJ-gene frequencies observed in the cord-blood data.(数据进行了一定的矫正)。The adjustment is a weighting based on the inverse of each TCR’s sampling probability.Because we oversampled regions of the “TCR space” near the candidate centroids we were able to estimate the density of the meta-clonotype neighborhoods well below 1 in 200,000. This is important because ideal meta-clonotypes would be highly specific even in repertoires larger than 200,000 sequences.(看来这部分,疾病对于TCR的克隆有很深的影响)。With each candidate centroid, a meta-clonotype was engineered by selecting the maximum distance radius that still controlled the number of neighboring TCRs in the weighted unenriched background to 1 in
106(距离半径的定义),使用不在脐带血库中的 TRBV 基因的候选质心被排除在进一步分析之外,因为需要估计基因频率来应用上述反向加权。(这个概念其实还是有点~~~😄).其实对于半径的定义,就是为了寻找专一对抗原的motif结构,这也是为什么不直接使用最特意TCR序列的原因。
(3)基础认知
γδT细胞是执行固有免疫功能的T细胞,其TCR由γ和δ链组成。此类T细胞主要分布于肠道呼吸道以及泌尿生殖道等黏膜和皮下组织,在外周血中只占CD3+T细胞的0.5%-1%。γδT细胞具有抗感染和抗肿瘤的作用,可杀伤病毒或细胞内细菌感染的靶细胞,同时通过分泌多种细胞因子发挥免疫调节作用和介导炎症反应。
αβT细胞占外周血T细胞总数95%以上,识别由MHC分子提呈的蛋白质抗原,具有MHC限制性,是介导机体特异性免疫中的细胞免疫及免疫调节的主要细胞。
通常所说的T细胞指的是αβT细胞。
当然,还有很多的概念和分析点,以及代码,我们不要贪多,一天学习一点点,吃透,然后进行下一步,越往后越难,基础一定要打好。
生活很好,有你更好