预测模型 | 决策曲线分析(DCA):基于ggDCA包

来自:一只勤奋的科研喵

欢迎大家关注我的公众号:一只勤奋的科研喵

文章来自:https://t.1yb.co/nAm1

11.png

前 言

本文介绍使用ggDCA包绘制多因素Cox回归模型的决策曲线分析(Decision curve analysis,DCA)。

ggDCA是目前能同时绘制Cox回归模型、logistic回归模型及广义线性模型的DCA曲线且其图形能用ggplot2美化。同时,该包还能计算DCA的曲线下面积、净获益及阈值概率的范围,如果把这些加入到文章中相信能增色不少!

该包是公众号“一棵树zj”作者写的7个R包之一,在公众号里作者还非常贴心的写了该包常见报错的处理办法。作者其余的R包也非常简洁高效,值得学习。

在这里感谢 “一棵树” 老师对ggDCA包的创建与分享。


ggDCA包

ggDCA包报错

9.png

由于survival包版本问题,从CRAN安装的ggDCA会报错(如上图)。
因此,要从作者的github上下载ggDCA

ggDCA安装

#1.安装devtools
install.packages("devtools")
#2.从github安装ggDCA
devtools::install_github('yikeshu0611/ggDCA')

#注:若是devtools::install_github('yikeshu0611/ggDCA')也报错,可先运行:
options(unzip ='internal')

安装时,Rstudio左下窗口出现如下提示,在其左下窗口点“Enter”就可以继续运行。
1.png

多因素Cox回归的DCA曲线

#载入R包
ibrary(rms)
library(ggDCA)
library(survival)  

#清理环境
rm(list = ls()) 

#2.载入数据,status=0为复发
aa<- read.csv('决策分析曲线.CSV')

#使用cph()函数时运行
#即报错:adjustment values not defined here or with datadist.....时
bb<-datadist(aa)
options(datadist='bb')

数据点击:https://mp.weixin.qq.com/s/VO3GiBZcL_kAoHrr6_dPAw获取

1、构建多因素Cox回归模型

数据中status,0为感兴趣事件,因此status==0

model1<-coxph(Surv(time,status==0)~AGE+N+ER+LVI+Grade+RT,
                data=aa)

2、决策曲线分析 DCA

fig1<-dca(model1,
           new.data = NULL,
           times=60)
  1. 不写times=60,默认为times="median";
  2. 想看多个时间点DCA,times=c(36,48,60);
  3. 想看外部验证数据DCA曲线,载入外部数据后,new.data = NULLNULL变为外部数据名字。

3、DCA曲线绘制和美化

ggplot(dca1,       
       model.names="模型1",
       linetype =F, #线型
       lwd = 1.2)   #线粗
2.png

4. 美化

library(ggprism)
ggplot(dca1,linetype =F,lwd = 1.2)+  
  theme_classic()+  
  theme_prism(base_size =17)+
  theme(legend.position="top")+
  scale_x_continuous(
    limits = c(0, 1),
    guide = "prism_minor") +
  scale_y_continuous(
    limits = c(-0.01, 0.2),
    guide = "prism_minor")+
  scale_colour_prism(         
    palette = "candy_bright",
    name = "Cylinders",
    label = c("模型1", "ALL", "None"))+
  labs(title = "5年DCA基于ggDCA包")
3.png

更多细节点击查看原文:https://t.1yb.co/nAm1

11.png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,684评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,143评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,214评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,788评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,796评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,665评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,027评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,679评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,346评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,664评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,766评论 1 331
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,412评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,015评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,974评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,073评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,501评论 2 343

推荐阅读更多精彩内容