Spark RDD分区策略

RDD的数据分区策略由Partitioner数据分区器控制,Spark提供两个类型分片函数,如下:

Partitioner类的代码依赖结构

Partitioner

Partitioner

numPartitions:返回分区数量

key:根据key返回该key对应的分区编号,范围:[0, numPartitions-1]

HashPartitioner

基于哈希实现,对于给定的key,计算其hashCode,并除于分区的个数取余,如果余数小于0,则用余数+分区的个数,同时支持key值为null的情况,当key为null的时候,返回0,最后返回的值就是这个key所属的分区ID。

HashPartitioner

若为负数则mod+numPartitions转为正数

Utils#nonNegativeMod

RangePartitioner

HashPartitioner分区的实现原可能导致每个分区中数据量的不均匀,极端情况下会导致某些分区拥有RDD的全部数据(Hash冲突的原因)。

RangePartitioner分区则尽量保证每个分区中数据量的均匀,简单的说就是将一定范围内的数映射到某一个分区内。主要用于RDD的数据排序相关API中,比如sortByKey底层使用的数据分区器就是RangePartitioner分区器;该分区器的实现方式主要是通过两个步骤来实现的,第一步:先重整个RDD中抽取出样本数据,将样本数据排序,计算出每个分区的最大key值,形成一个Array[KEY]类型的数组变量rangeBounds;第二步:判断key在rangeBounds中所处的范围,给出该key值在下一个RDD中的分区id下标;该分区器要求RDD中的KEY类型必须是可以排序的,代码说明如下:

排序器
RangePartitioner#rangeBounds

119~120:分区数是一个的情况下,直接返回一个空的集合,表示数据不进行分区

123:数据抽样大小,最多1M的数据量(10^6),最少20倍的RDD分区数量,也就是每个RDD分区至少抽取20条数据

125:计算每个分区抽取的数据量大小,假设输入数据每个分区分布的比较均匀。对于超大数据集(分区数超过5万的)乘以3会让数据稍微增大一点,对于分区数低于5万的数据集,每个分区抽取数据量为60条。5万是10^6 / 20得出,60是20 * 3的得出。

126:从rdd中抽取数据,返回值:(总rdd数据量, Array[分区id,当前分区的数据量,当前分区抽取的数据])。sketch函数对父RDD中的每个分区进行采样,并记录下分区的ID和分区中数据总和。

RangePartitioner#sketch

128:如果总的数据量为0(RDD为空),那么直接返回一个空的数组

132:计算总样本数量和总记录数的占比,占比最大为1.0

133:保存样本数据的集合buffer

134:保存数据分布不均衡的分区id(数据量超过fraction比率的分区)

135:计算抽取出来的样本数据

136:如果fraction乘以当前分区中的数据量大于之前计算的每个分区的抽象数据大小,那么表示当前分区抽取的数据太少了,该分区数据分布不均衡,需要重新抽取

140:当前分区不属于数据分布不均衡的分区,计算占比权重,并添加到candidates集合中

146:对于数据分布不均衡的RDD分区,重新进行数据抽样

148:获取数据分布不均衡的RDD分区,并构成RDD

149:随机种子

150:利用rdd的sample抽样函数API进行数据抽样

154:将最终的抽样数据计算出rangeBounds出来

rangeBounds#getPartition

159:下一个RDD的分区数量是rangeBounds数组中元素数量+ 1个

161:二分查找器

163:根据RDD的key值返回对应的分区id,从0开始

164:强制转换key类型为RDD中原本的数据类型

168:如果分区数据小于等于128个,那么直接本地循环寻找当前k所属的分区下标

173:如果分区数量大于128个,那么使用二分查找方法寻找对应k所属的下标

175:但是如果k在rangeBounds中没有出现,实质上返回的是一个负数(范围)或者是一个超过rangeBounds大小的数(最后一个分区,比所有数据都大)

182:根据数据排序是升序还是降序进行数据的排列,默认为升序

RangePartitioner构建rangeBounds数组对象,主要步骤是:

1. 如果分区数量小于2或者rdd中不存在数据的情况下,直接返回一个空的数组,不需要计算range的边界;如果分区数据大于1的情况下,而且rdd中有数据的情况下,才需要计算数组对象

2. 计算总体的数据抽样大小sampleSize,计算规则是:至少每个分区抽取20个数据或者最多1M的数据量

3. 根据sampleSize和分区数量计算每个分区的数据抽样样本数量sampleSizePrePartition

4. 调用RangePartitioner的sketch函数进行数据抽样,计算出每个分区的样本

5. 计算样本的整体占比以及数据量过多的数据分区,防止数据倾斜

6. 对于数据量比较多的RDD分区调用RDD的sample函数API重新进行数据抽取

7. 将最终的样本数据通过RangePartitoner的determineBounds函数进行数据排序分配,计算出rangeBounds

getPartition定位分区ID,算法相对简单:如果分区边界数组的大小小于或等于128的时候直接变量数组,否则采用二分查找法确定key属于某个分区。

从上面的采样算法可以看出,对于不同的分区weight的值是不一样的,这个值对应的就是每个分区的采样间隔。

RangePartitioner#determineBounds

这个函数最后返回的就是分区的划分边界。

总结

基本上HashPartitioner已经满足绝大部分需求,RangePartitioner从上述分析使用场景有一定的局限。

另外,在特殊情况下用户可自定义Partitioner,只需要扩展Partitioner抽象类,实现下面3个方法:

def numPartitions: Int:这个方法需要返回你想要创建分区的个数;

def getPartition(key: Any): Int:这个函数需要对输入的key做计算,然后返回该key的分区ID,范围一定是0到numPartitions-1;

equals():这个是Java标准的判断相等的函数,之所以要求用户实现这个函数是因为Spark内部会比较两个RDD的分区是否一样。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,179评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,229评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,032评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,533评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,531评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,539评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,916评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,574评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,813评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,568评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,654评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,354评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,937评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,918评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,152评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,852评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,378评论 2 342

推荐阅读更多精彩内容