NumPy快速入门手册

  NumPy(Numerical Python)是Python语言的一个扩充程序库。支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。

ndarray类

  NumPy中的数组类被称为ndarray,要注意的是numpy.array与Python标准库中的array.array是不同的。ndarray具有如下比较重要的属性:

ndarray.ndim

  ndarray.ndim表示数组的维度。

ndarray.shape

  ndarray.shape是一个整型tuple,用来表示数组中的每个维度的大小。例如,对于一个n行和m列的矩阵,其shape为(n,m)。

ndarray.size

  ndarray.size表示数组中元素的个数,其值等于shape中所有整数的乘积。

ndarray.dtype

  ndarray.dtype用来描述数组中元素的类型,ndarray中的所有元素都必须是同一种类型,如果在构造数组时,传入的参数不是同一类型的,不同的类型将进行统一转化。除了标准的Python类型外,NumPy额外提供了一些自有的类型,如numpy.int32numpy.int16以及numpy.float64等。

ndarray.itemsize

  ndarray.itemsize用于表示数组中每个元素的字节大小。

代码示例:
>>> import numpy as np
>>> a = np.arange(15).reshape(3,5)
>>> a
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14]])
>>> a.shape
(3, 5)
>>> a.ndim
2
>>> a.dtype.name
'int64'
>>> a.dtype
dtype('int64')
>>> a.size
15
>>> a.itemsize
8
>>> type(a)
<class 'numpy.ndarray'>
>>> 
>>> b = np.array([1,2,3,4,5,6,7,8,9])
>>> b
array([1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> c = np.array([1,2,3,4,5,6,'7','a','b'])
>>> c
array(['1', '2', '3', '4', '5', '6', '7', 'a', 'b'], dtype='<U21')
>>> type(b)
<class 'numpy.ndarray'>
>>> type(c)
<class 'numpy.ndarray'>
>>> c.dtype
dtype('<U21')
>>> b.dtype
dtype('int64')
>>> c.itemsize
84
>>> b.itemsize
8

数组创建

  NumPy中创建数组的方式有若干种。最简单的,可以直接利用Python中常规的listtuple进行创建。

>>> import numpy as np
>>> a = np.array([1,2,3,4,5,6])
>>> b = np.array((1,2,3,4,5,6))
>>> a
array([1, 2, 3, 4, 5, 6])
>>> b
array([1, 2, 3, 4, 5, 6])

  这里需要注意传入的参数,下面的第一种方式是错误的:

>>> a = np.array(1,2,3,4)    # WRONG
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ValueError: only 2 non-keyword arguments accepted
>>> a = np.array([1,2,3,4])  # RIGHT

  另外,传入的参数必须是同一结构,不是同一结构将发生转换。

>>> import numpy as np
>>> a = np.array([1,2,3.5])
>>> a
array([1. , 2. , 3.5])
>>> b = np.array([1,2,3])
>>> b
array([1, 2, 3])
>>> c = np.array(['1',2,3])
>>> c
array(['1', '2', '3'], dtype='<U1')
>>> 

  另外,array还可以将序列的序列转换成二位数组,可以将序列的序列的序列转换成三维数组,以此类推。

>>> import numpy as np
>>> a = np.array([[1,2,3],[2,3,4]])
>>> a
array([[1, 2, 3],
       [2, 3, 4]])
>>> b = np.array([[1,2,3],[2,3,4],[3,4,5]])
>>> b
array([[1, 2, 3],
       [2, 3, 4],
       [3, 4, 5]])
>>> 

  另外,创建数组的时候,可以明确的规定数组的类型。

>>> c = np.array([1,2,3], dtype = complex)
>>> c
array([1.+0.j, 2.+0.j, 3.+0.j])
>>> d = np.array([[1,2,3],[4,5,6]], dtype = '<U1')
>>> d
array([['1', '2', '3'],
       ['4', '5', '6']], dtype='<U1')
>>> 

  另外,NumPy还提供了便捷地创建特定数组的方式。

>>> import numpy as np
>>> a = np.zeros((3,4))
>>> a
array([[0., 0., 0., 0.],
       [0., 0., 0., 0.],
       [0., 0., 0., 0.]])
>>> b = np.zeros((2,2,2))
>>> b
array([[[0., 0.],
        [0., 0.]],

       [[0., 0.],
        [0., 0.]]])
>>> c = np.ones((3,3))
>>> c
array([[1., 1., 1.],
       [1., 1., 1.],
       [1., 1., 1.]])
>>> d = np.ones((3,3), dtype = np.int16)
>>> d
array([[1, 1, 1],
       [1, 1, 1],
       [1, 1, 1]], dtype=int16)
>>> e = np.arange(15)
>>> e
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14])
>>> f = np.arange(15).reshape(3,5)
>>> f
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14]])
>>> g = np.arange(0,15,3)
>>> g
array([ 0,  3,  6,  9, 12])
>>> h = np.arange(0,3,0.3)
>>> h
array([0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.1, 2.4, 2.7])

>>> from numpy import pi
>>> np.linspace( 0, 2, 9 )                 # 9 numbers from 0 to 2
array([ 0.  ,  0.25,  0.5 ,  0.75,  1.  ,  1.25,  1.5 ,  1.75,  2.  ])
>>> x = np.linspace( 0, 2*pi, 100 )        # useful to evaluate function at lots of points
>>> f = np.sin(x)

基本操作

  对数组中的算术操作是元素对应(elementwise)的,例如,对两个数组进行加减乘除,其结果是对两个数组对一个位置上的数进行加减乘除,数组算术操作的结果会存放在一个新建的数组中。

>>> import numpy as np
>>> a = np.array([10,20,30,40])
>>> b = np.arange(4)
>>> a
array([10, 20, 30, 40])
>>> b
array([0, 1, 2, 3])
>>> c = a - b
>>> c
array([10, 19, 28, 37])
>>> a
array([10, 20, 30, 40])
>>> b
array([0, 1, 2, 3])
>>> b**2
array([0, 1, 4, 9])
>>> b
array([0, 1, 2, 3])
>>> a<35
array([ True,  True,  True, False])
>>> a
array([10, 20, 30, 40])

  在NumPy中,*用于数组间元素对应的乘法,而不是矩阵乘法,矩阵乘法可以用dot()方法来实现。

>>> A = np.array([[1,2],[3,4]])
>>> B = np.array([[0,1],[0,1]])
>>> A
array([[1, 2],
       [3, 4]])
>>> B
array([[0, 1],
       [0, 1]])
>>> A*B                    # elementwise product
array([[0, 2],
       [0, 4]])
>>> A.dot(B)               # matrix product
array([[0, 3],
       [0, 7]])
>>> np.dot(A,B)            # another matrix product
array([[0, 3],
       [0, 7]])

  有些操作,如*=+=-=/=等操作,会直接改变需要操作的数组,而不是创建一个新的数组。

>>> a = np.ones((2,3), dtype = int)
>>> a
array([[1, 1, 1],
       [1, 1, 1]])
>>> b = np.random.random((2,3))
>>> b
array([[0.27020018, 0.16904478, 0.29618462],
       [0.45432616, 0.99311013, 0.56769309]])
>>> a *= 3
>>> a
array([[3, 3, 3],
       [3, 3, 3]])
>>> b += 3
>>> b
array([[3.27020018, 3.16904478, 3.29618462],
       [3.45432616, 3.99311013, 3.56769309]])
>>> b += a
>>> b
array([[6.27020018, 6.16904478, 6.29618462],
       [6.45432616, 6.99311013, 6.56769309]])
>>> a
array([[3, 3, 3],
       [3, 3, 3]])
>>> a += b              # b is not automatically converted to integer type
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: Cannot cast ufunc add output from dtype('float64') to dtype('int64') with casting rule 'same_kind'
>>> 

  当操作不同类型的数组时,最终的结果数组的类型取决于精度最宽的数组的类型。(即所谓的向上造型)

>>> a = np.ones(3, dtype=np.int32)
>>> b = np.linspace(0,pi,3)
>>> b.dtype.name
'float64'
>>> c = a+b
>>> c
array([ 1.        ,  2.57079633,  4.14159265])
>>> c.dtype.name
'float64'
>>> d = np.exp(c*1j)
>>> d
array([ 0.54030231+0.84147098j, -0.84147098+0.54030231j,
       -0.54030231-0.84147098j])
>>> d.dtype.name
'complex128'

  ndarray类实现了许多操作数组的一元方法,如求和、求最大值、求最小值等。

>>> a = np.random.random((2,3))
>>> a
array([[0.62181697, 0.26165654, 0.34994938],
       [0.95619296, 0.24614291, 0.42120462]])
>>> a.sum()
2.8569633678947346
>>> a.min()
0.24614290611891454
>>> a.max()
0.9561929625193091
>>> 

  除了上述一元方法以外,NumPy还提供了操作数组中特定行和列的一元方法,通过制定不同的axis来实现。

>>> b = np.arange(12).reshape(3,4)
>>> b
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>> b.sum(axis = 0)                   # sum of each column
array([12, 15, 18, 21])
>>> b.sum(axis = 1)                   # sum of each row
array([ 6, 22, 38])
>>> b.min(axis = 0)                   # min of each column
array([0, 1, 2, 3])
>>> b.min(axis = 1)                   # min of each row
array([0, 4, 8])
>>> b.max(axis = 0)                   # max of each column
array([ 8,  9, 10, 11])
>>> b.max(axis = 1)                   # max of each row
array([ 3,  7, 11])
>>> b.cumsum(axis = 1)                # cumulative sum along each row
array([[ 0,  1,  3,  6],
       [ 4,  9, 15, 22],
       [ 8, 17, 27, 38]])
>>> b.cumsum(axis = 0)                # cumulative sum along each column
array([[ 0,  1,  2,  3],
       [ 4,  6,  8, 10],
       [12, 15, 18, 21]])
>>> 

通用方法

  NumPy提供了大量的通用数学和算术方法,比如常见的sincos、具体可以参考如下:

all, any, apply_along_axis, argmax, argmin, argsort, average, bincount, ceil, clip, conj, corrcoef, cov, cross, cumprod, cumsum, diff, dot, floor, inner, inv, lexsort, max, maximum, mean, median, min, minimum, nonzero, outer, prod, re, round, sort, std, sum, trace, transpose, var, vdot, vectorize, where

>>> B = np.arange(3)
>>> B
array([0, 1, 2])
>>> np.exp(B)
array([ 1.        ,  2.71828183,  7.3890561 ])
>>> np.sqrt(B)
array([ 0.        ,  1.        ,  1.41421356])
>>> C = np.array([2., -1., 4.])
>>> np.add(B, C)
array([ 2.,  0.,  6.])

数组索引和迭代

  与Python中定义的list一样,NumPy支持一维数组的索引、切片和迭代。

>>> a = np.arange(10)**3
>>> a
array([  0,   1,   8,  27,  64, 125, 216, 343, 512, 729])
>>> a[3]
27
>>> a[2:5]
array([ 8, 27, 64])
>>> a[:6:2] = -1111
>>> a
array([-1111,     1, -1111,    27, -1111,   125,   216,   343,   512,
         729])
>>> a[::-1]
array([  729,   512,   343,   216,   125, -1111,    27, -1111,     1,
       -1111])

  多维数组与一维数组相似,其在每个轴上都有一个对应的索引(index),这些索引是在一个逗号分隔的元组(tuple)中给出的。

>>> b = np.arange(15).reshape(3,5)
>>> b
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14]])
>>> b[2,3]
13
>>> b[3,3]
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
IndexError: index 3 is out of bounds for axis 0 with size 3
>>> b[0,0]
0
>>> b[0,4]
4
>>> 
>>> 
>>> b[:, 1]
array([ 1,  6, 11])
>>> b[1, :]
array([5, 6, 7, 8, 9])
>>> b[-1]
array([10, 11, 12, 13, 14])
>>> b.shape
(3, 5)

  这里需要注意的是,数组的第一个索引是从0开始的。一维数组和多维数组的迭代,可以参考如下示例:

>>> for row in b:
...     print(row)
...
[0 1 2 3]
[10 11 12 13]
[20 21 22 23]
[30 31 32 33]
[40 41 42 43]

>>> for element in b.flat:
...     print(element)
...
0
1
2
3
10
11
12
13
20
21
22
23
30
31
32
33
40
41
42
43

  其中flat属性是array中的每个元素的迭代器。

shape操作

1. 改变数组的shape

  Numpy中数组shape由每个轴上元素的个数决定的。例如:

>>> import numpy as np
>>> a = np.ones((3,4), dtype = int)
>>> a
array([[1, 1, 1, 1],
       [1, 1, 1, 1],
       [1, 1, 1, 1]])
>>> a.shape
(3, 4)

  NumPy中数组的shape是可以通过多种方式进行改变的,下面展示三种改变数组shape而不改变当前数组的方法,这三种方法返回一个特定shape的数组,但是并不改变原来的数组:

>>> import numpy as np
>>> a = np.ones((3,4), dtype = int)
>>> a
array([[1, 1, 1, 1],
       [1, 1, 1, 1],
       [1, 1, 1, 1]])
>>> a.ravel()
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])
>>> a
array([[1, 1, 1, 1],
       [1, 1, 1, 1],
       [1, 1, 1, 1]])
>>> b = a.ravel()
>>> b
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])
>>> a
array([[1, 1, 1, 1],
       [1, 1, 1, 1],
       [1, 1, 1, 1]])
>>> c = a.reshape(2,-1)
>>> c
array([[1, 1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1, 1]])
>>> a
array([[1, 1, 1, 1],
       [1, 1, 1, 1],
       [1, 1, 1, 1]])
>>> a.T
array([[1, 1, 1],
       [1, 1, 1],
       [1, 1, 1],
       [1, 1, 1]])
>>> a
array([[1, 1, 1, 1],
       [1, 1, 1, 1],
       [1, 1, 1, 1]])
>>> d = a.T
>>> d
array([[1, 1, 1],
       [1, 1, 1],
       [1, 1, 1],
       [1, 1, 1]])
>>> a.shape
(3, 4)
>>> b.shape
(12,)
>>> c.shape
(2, 6)
>>> d.shape
(4, 3)

  除此之外,NumPy还提供了可以直接修改原始数组shape的方法——resize()resize()方法和reshape()方法的最主要区别在于,reshape()方法返回一个特定shape的数组,而resize()方法会直接更改原数组。

>>> a = np.arange(12).reshape(3,4)
>>> a
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>> a.resize(2,6)
>>> a
array([[ 0,  1,  2,  3,  4,  5],
       [ 6,  7,  8,  9, 10, 11]])
2. 数组堆叠和切片

  NumPy支持将多个数据按照不同的轴进行堆叠:

>>> a = np.floor(10*np.random.random((2,2)))
>>> a
array([[0., 8.],
       [4., 8.]])
>>> b = np.floor(10*np.random.random((2,2)))
>>> b
array([[1., 4.],
       [4., 1.]])
>>> np.vstack((a,b))
array([[0., 8.],
       [4., 8.],
       [1., 4.],
       [4., 1.]])
>>> np.hstack((a,b))
array([[0., 8., 1., 4.],
       [4., 8., 4., 1.]])

  hstack()实现数组横向堆叠,vstack()实现数组纵向堆叠。

>>> from numpy import newaxis
>>> np.column_stack((a,b))
array([[4, 2],
       [2, 8]])
>>> a[:, newaxis]
array([[4],
       [2]])
>>> np.column_stack((a[:,newaxis],b[:,newaxis]))
array([[4, 2],
       [2, 8]])
>>> np.vstack((a[:,newaxis],b[:,newaxis]))
array([[4],
       [2],
       [2],
       [8]])

>>> np.r_[1:4,0,4]
array([1, 2, 3, 0, 4])

  除了支持数组的横向和纵向堆叠之外,NumPy还支持数组的横向和纵向分割,示例如下:

>>> a = np.arange(12).reshape(3,4)
>>> a
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>> np.split(a,3)
[array([[0, 1, 2, 3]]), array([[4, 5, 6, 7]]), array([[ 8,  9, 10, 11]])]
>>> np.h
np.half(         np.hanning(      np.histogram(    np.histogramdd(  np.hstack(       
np.hamming(      np.heaviside(    np.histogram2d(  np.hsplit(       np.hypot(        
>>> np.hsplit(a,4)
[array([[0],
       [4],
       [8]]), array([[1],
       [5],
       [9]]), array([[ 2],
       [ 6],
       [10]]), array([[ 3],
       [ 7],
       [11]])]
>>> np.vsplit(a,3)
[array([[0, 1, 2, 3]]), array([[4, 5, 6, 7]]), array([[ 8,  9, 10, 11]])]
>>> 

  其中,split()方法默认为横线分割。

复制和视图

  NumPy中,数组的复制有三种方式:

  1. Python通用的地址复制:通过 b = a 复制 a 的值,b 与 a 指向同一地址,改变 b 同时也改变 a。
  2. 通过视图ndarray.view()仅复制值,当对 c 值进行改变会改变 a 的对应的值,而改变 c 的 shape 不改变 a 的 shape
  3. ndarray.copy() 进行的完整的拷贝,产生一份完全相同的独立的复制。
>>> a = np.arange(12)
>>> a
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])
>>> b = a
>>> print(a is b)
True
>>> 
>>> 
>>> c = a.view()
>>> c
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])
>>> print(a is c)
False
>>> c.shape = 2,6
>>> c
array([[ 0,  1,  2,  3,  4,  5],
       [ 6,  7,  8,  9, 10, 11]])
>>> c[0,0] = 111
>>> c
array([[111,   1,   2,   3,   4,   5],
       [  6,   7,   8,   9,  10,  11]])
>>> a
array([111,   1,   2,   3,   4,   5,   6,   7,   8,   9,  10,  11])
>>> 
>>> 
>>> d = a.copy()
>>> print(a is d)
False
>>> d.shape = 2,6
>>> d
array([[111,   1,   2,   3,   4,   5],
       [  6,   7,   8,   9,  10,  11]])
>>> a
array([111,   1,   2,   3,   4,   5,   6,   7,   8,   9,  10,  11])
>>> d[0,0] = 999
>>> d
array([[ 999,  1,  2,  3,  4,  5],
       [ 6,  7,  8,  9, 10, 11]])
>>> a
array([111,   1,   2,   3,   4,   5,   6,   7,   8,   9,  10,  11])
>>> 

NumPy功能和方法预览

数组创建

arange, array, copy, empty, empty_like, eye, fromfile, fromfunction, identity, linspace, logspace, mgrid, ogrid, ones, ones_like, r, zeros, zeros_like

数组转换

ndarray.astype, atleast_1d, atleast_2d, atleast_3d, mat

操作

array_split, column_stack, concatenate, diagonal, dsplit, dstack, hsplit, hstack, ndarray.item, newaxis, ravel, repeat, reshape, resize, squeeze, swapaxes, take, transpose, vsplit, vstack

问题

all, any, nonzero, where

排列

argmax, argmin, argsort, max, min, ptp, searchsorted, sort

运算

choose, compress, cumprod, cumsum, inner, ndarray.fill, imag, prod, put, putmask, real, sum

基础统计

cov, mean, std, var

基本线性代数

cross, dot, outer, linalg.svd, vdot

参考:

https://segmentfault.com/a/1190000011836017
https://docs.scipy.org/doc/numpy-dev/user/quickstart.html

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,189评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,577评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,857评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,703评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,705评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,620评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,995评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,656评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,898评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,639评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,720评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,395评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,982评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,953评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,195评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,907评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,472评论 2 342