Kolmogorov-Smirnov是比较一个频率分布f(x)与理论分布g(x)或者两个观测值分布的检验方法。其原假设H0:两个数据分布一致或者数据符合理论分布。D=max| f(x)- g(x)|,当实际观测值D>D(n,α)则拒绝H0,否则则接受H0假设。
KS检验与t-检验之类的其他方法不同是KS检验不需要知道数据的分布情况,可以算是一种非参数检验方法。当然这样方便的代价就是当检验的数据分布符合特定的分布事,KS检验的灵敏度没有相应的检验来的高。在样本量比较小的时候,KS检验最为非参数检验在分析两组数据之间是否不同时相当常用。
PS:t-检验的假设是检验的数据满足正态分布,否则对于小样本不满足正态分布的数据用t-检验就会造成较大的偏差,虽然对于大样本不满足正态分布的数据而言t-检验还是相当精确有效的手段。
假设检验的基本思想:
若对总体的某个假设是真实的,那么不利于或者不能支持这一假设的事件A在一次试验中是几乎不可能发生的。如果事件A真的发生了,则有理由怀疑这一假设的真实性,从而拒绝该假设。
实质分析:
假设检验实质上是对原假设是否正确进行检验,因此检验过程中要使原假设得到维护,使之不轻易被拒绝;否定原假设必须有充分的理由。同时,当原假设被接受时,也只能认为否定该假设的根据不充分,而不是认为它绝对正确。
1、检验指定的数列是否服从正态分布
借助假设检验的思想,利用K-S检验可以对数列的性质进行检验,看代码:
from scipy.stats import kstest
import numpy as np
x = np.random.normal(0,1,1000)
test_stat = kstest(x, 'norm')
test_stat
>>>(0.021080234718821145, 0.76584491300591395)
首先生成1000个服从N(0,1)标准正态分布的随机数,在使用k-s检验该数据是否服从正态分布,提出假设:x从正态分布。
最终返回的结果,p-value=0.76584491300591395,比指定的显著水平(假设为5%)大,则我们不能拒绝假设:x服从正态分布。
这并不是说x服从正态分布一定是正确的,而是说没有充分的证据证明x不服从正态分布。因此我们的假设被接受,认为x服从正态分布。
如果p-value小于我们指定的显著性水平,则我们可以肯定的拒绝提出的假设,认为x肯定不服从正态分布,这个拒绝是绝对正确的。
2、检验指定的两个数列是否服从相同分布
from scipy.stats import ks_2samp
beta=np.random.beta(7,5,1000)
norm=np.random.normal(0,1,1000)
ks_2samp(beta,norm)
>>>(0.60099999999999998, 4.7405805465370525e-159)
我们先分别使用beta分布和normal分布产生两个样本大小为1000的数列,使用ks_2samp检验两个数列是否来自同一个样本,提出假设:beta和norm服从相同的分布。
最终返回的结果,p-value=4.7405805465370525e-159,比指定的显著水平(假设为5%)小,则我们完全可以拒绝假设:beta和norm不服从同一分布。