GoogLeNet的心路历程(二)

本文介绍关于GoogLeNet第一篇正式论文,习惯称为inception v1,如下:

在开始介绍论文之前,先说一些题外话,GoogLeNet这个名字的诞生由两方面促成,一是设计者在Google工作,二是向LeNet致敬。GoogLeNet只是一个名字,它的核心内容是发明了Inception Architecture(以下简称IA),发明IA的灵感来自于2013年的一篇论文《Provable Bounds for Learning Some Deep Representations》,这篇论文读起来非常困难,需要很多的数学知识,有兴趣的可以看看。

一、inception v1的主要贡献

  • 1、提出inception architecture并对其优化
  • 2、取消全连层
  • 3、运用auxiliary classifiers加速网络converge

接下来对以上几点分别介绍。

二、Inception architecture

首先得说一下Szegedy发明IA的动机,他估计是在某天阅读了Provable Bounds for Learning Some Deep Representations这篇论文,又结合自己多年来在深度学习界摸爬滚打的经验,发现传统的提高网络精度的方法是一条邪路(P.S. 传统的方法指的是 扩大网络规模 或 增大训练数据集),而想从本质上提高网络性能,就得用sparsely connected architectures,即“稀疏连接结构”。

我自己对“稀疏连接结构”的理解是这样的,用尽可能的“小”、“分散”的可堆叠的网络结构,去学习复杂的分类任务,怎么体现“小”、“分散”呢?如下图:


Inception Architecture,naive version

原来造神经网络,都是一条线下来,我们可以回想一下AlexNet、VGG等著名网络,而IA是“分叉-汇聚”型网络,也就是说在一层网络中存在多个不同尺度的kernels,卷积完毕后再汇聚,为了更好理解,“汇聚”的tensorflow代码写出来是这样的:

net = tf.concat(3, [branch1x1, branch5x5, branch3x3, branch_pool])

就是简单的在kernel维度把矩阵concatenate起来。但是这么做有一个问题,会产生“维度爆炸”,什么意思呢?假如branch1x1、branch3x3、branch5x5都有256个kernels,加上branch_pool的kernels(假定为256),经过tf.concat操作,最终的kernels是256×4=1024个kernels!这没法接受啊!如果多层IA叠加起来,那kernels的数量岂不上天!!于是Szegedy就改进了一下,如下图:

Inception module with dimension reductions

他加入了kernels数量控制方式,就是那些1×1的卷积层,这些1×1的卷积层输出kernels会比上一层要少,这样即便在经过tf.concat以后,总kernels数量不会增加太多。另外,这些1×1的卷积层还增加了网络的非线性程度。

关于IA的结构就介绍完了,可是,为什么?这样的结构有啥用?Szegedy在论文里解释过一点点:IA之所以能提高网络精度,可能就是归功于它拥有多个不同尺度的kernels,每一个尺度的kernel会学习不同的特征,把这些不同kernels学习到的特征汇聚给下一层,能够更好的实现全方位的深度学习!

三、取消全连层

为什么VGG网络的参数那么多?就是因为它在最后有两个4096的全连层!Szegedy吸取了教训,为了压缩GoogLeNet的网络参数,他把全连层取消了!其实我个人也认为全连层作用确实没那么大,取消了也好,GoogLeNet网络详细配置如下:


GoogLeNet详细配置

从上图就可以看出,网络的最后几层是avg pool、dropout、linear和softmax,没有看到fully connect的影子。现在取消全连层貌似是个大趋势,近两年的优秀大型神经网络都没有全连层,可能是全连层参数太多,网络深度增加了以后,难以接受吧

四、Auxiliary classifiers

搞机器学习的都知道,梯度消散是所有深层网络的通病,往往训练到最后,网络最开始的几层就“训不动了”!于是Szegedy加入了auxiliary classifiers(简称AC),用于辅助训练,加速网络converge,如下图画红框部分:

GoogLeNet

以上图片摘自此文,因为网络太深了,竖着太长,就把它横过来看了。可以看到,笔者在网络中间层加入了两个AC,这两个AC在训练的时候也跟着学习,同时把自己学习到的梯度反馈给网络,算上网络最后一层的梯度反馈,GoogLeNet一共有3个“梯度提供商”,先不说这么做有没有问题,它确实提高了网络收敛的速度,因为梯度大了嘛。另外,GoogLeNet在做inference的时候AC是要被摘掉的。

AC这种加速收敛训练方式与ResNet表面上看不太一样,但是我感觉本质上应该是类似的。ResNet也很深,但是它先是通过构建浅层网络学习参数,再把浅层网络的参数应用到较深网络中,从而尽可能减少梯度消散的影响。GoogLeNet是直接把浅层网络的训练和深层网络的训练揉到一起了。关于这个问题还有待深究。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 194,457评论 5 459
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 81,837评论 2 371
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 141,696评论 0 319
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,183评论 1 263
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,057评论 4 355
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,105评论 1 272
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,520评论 3 381
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,211评论 0 253
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,482评论 1 290
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,574评论 2 309
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,353评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,213评论 3 312
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,576评论 3 298
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 28,897评论 0 17
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,174评论 1 250
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,489评论 2 341
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,683评论 2 335

推荐阅读更多精彩内容