python-matplotlib模块

matplotlib

matplotlib官方文档

什么是matplotlib

matplotlib: 最流行的Python底层绘图库,主要做数据可视化图表,名字取材于MATLAB,模仿MATLAB构建

matplotlib基本要点

# 导入pyplot
from matplotlib import pyplot as plt

# 数据在x轴的位置,是一个可迭代对象
x = range(2, 26, 2)

# 数据在y轴的位置,是一个可迭代对象
y = [15, 13, 14.5, 17, 20, 25, 26, 26, 24, 22, 18, 15]

# 传入x和y,通过plot绘制出折线
plt.plot(x, y)

# 在执行程序的时候展示图形
plt.show()

设置图形大小和保存图片

from matplotlib import pyplot as plt

# 设置图形大小
fig = plt.figure(figsize=(20, 8), dpi=80)

x = range(2, 26, 2)
y = [15, 13, 14.5, 17, 20, 25, 26, 26, 24, 22, 18, 15]

plt.plot(x, y)

# 保存图片,可保存svg格式
plt.savefig('./sig_size.jpg')

调整x轴和y轴的刻度

'''
a表示10点到12点中每一分钟的气温,如何绘制每分钟气温的变化情况?
a = [random.randint(20,35) for i in range(120)]
'''

import random
from matplotlib import pyplot as plt

fig = plt.figure(figsize=(20, 8), dpi=80)

x = range(120)

# 设置随机种子,让不同时候随机的结果都一样
random.seed(10)

y = [random.randint(20, 35) for i in range(120)]

plt.plot(x, y)

# 设置x轴的刻度
x_ticks = ['10点{}分'.format(i) for i in x if i < 60]
x_ticks += ['11点{}分'.format(i) for i in x if i > 60]

# 让列表x和x_ticks上的数据都传入,最终会在x轴上一一对应显示
# 两组数据的长度必须保持一致,否则不能完全覆盖整个轴
# 使用列表切片,每隔5个选一个数据进行展示
# 为了让字符串不会被覆盖,使用rotation选项,让字符串旋转90度显示
plt.xticks(x[::5], x_ticks[::5], rotation=90)

plt.show()

设置中文显示

'''
a表示10点到12点中每一分钟的气温,如何绘制每分钟气温的变化情况?
a = [random.randint(20,35) for i in range(120)]
'''

import random
from matplotlib import pyplot as plt
from matplotlib import font_manager

fig = plt.figure(figsize=(20, 8), dpi=80)

# 设置中文字体
myfont = font_manager.FontProperties(fname="C:/Windows/Fonts/simhei.ttf")

x = range(120)
random.seed(10)
y = [random.randint(20, 35) for i in range(120)]

plt.plot(x, y)

x_ticks = ['10点{}分'.format(i) for i in x if i < 60]
x_ticks += ['11点{}分'.format(i) for i in x if i > 60]

# 在需要使用中文的地方,添加fontproperties属性
plt.xticks(x[::5], x_ticks[::5], rotation=45, fontproperties=myfont)

plt.show()

给图形设置描述信息

'''
a表示10点到12点中每一分钟的气温,如何绘制每分钟气温的变化情况?
a = [random.randint(20,35) for i in range(120)]
'''

import random
from matplotlib import pyplot as plt
from matplotlib import font_manager

fig = plt.figure(figsize=(20, 8), dpi=80)

myfont = font_manager.FontProperties(fname="C:/Windows/Fonts/simhei.ttf")

x = range(120)
random.seed(10)
y = [random.randint(20, 35) for i in range(120)]

plt.plot(x, y)

x_ticks = ['10点{}分'.format(i) for i in x if i < 60]
x_ticks += ['11点{}分'.format(i) for i in x if i > 60]

# 设置x轴描述
plt.xlabel('时间', fontproperties=myfont)
# 设置y周描述
plt.ylabel('温度(℃)', fontproperties=myfont)
# 设置标题
plt.title('时间-温度变化曲线', fontproperties=myfont)

plt.xticks(x[::5], x_ticks[::5], rotation=45, fontproperties=myfont)

plt.show()

练习

假设大家在30岁的时候,根据自己的实际情况,统计出来了你和你同桌各自从11岁到30岁每年交的女(男)朋友的数量如列表a和b,请在一个图中绘制出该数据的折线图,以便比较自己和同桌20年间的差异,同时分析每年交女(男)朋友的数量走势

a = [1, 0, 1, 1, 2, 4, 3, 2, 3, 4, 4, 5, 6, 5, 4, 3, 3, 1, 1, 1]

b = [1, 0, 3, 1, 2, 2, 3, 3, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1]

要求:
y轴表示个数
x轴表示岁数,比如11岁,12岁等

from matplotlib import pyplot as plt
from matplotlib import font_manager

# 设置图形大小
fig = plt.figure(figsize=(20, 8), dpi=80)

# 设置字体
myfont = font_manager.FontProperties(fname='C:/Windows/Fonts/simhei.ttf')

# x轴数据,年龄
x = range(11, 31)

# y轴数据,谈女朋友的个数
y_a = [1, 0, 1, 1, 2, 4, 3, 2, 3, 4, 4, 5, 6, 5, 4, 3, 3, 1, 1, 1]
y_b = [1, 0, 3, 1, 2, 2, 3, 3, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1]

# 绘制折线图
# 通过label属性设置图例
# 通过linestyle属性设置线条样式 -实线 --虚线 -.点划线 :点虚线 ' '无线条
# 通过color属性设置线条颜色 r红色 g绿色 b蓝色 w白色 c青色 m洋红 y黄色 k黑色 支持16进制
# 通过alpha属性设置线条的不透明程度
plt.plot(x, y_a, label='自己', linestyle='--', color='r', alpha=0.1)
plt.plot(x, y_b, label='同桌', linestyle='-', color='b', alpha=1)

# 显示图例
# 通过loc属性设置图形显示的位置,可选值如下:
# best
# upper right
# upper left
# lower right
# lower left
# right
# center right 
# center left
# lower center
# upper center
# center
plt.legend(prop=myfont, loc='best')

# 设置刻度
x_ticks = ['{}岁'.format(i) for i in x]

# 显示刻度
plt.xticks(x, x_ticks, fontproperties=myfont, rotation=15)

# 显示图形
plt.show()

绘制散点图

假设通过爬虫你获取到了北京2016年3,10月份每天白天的最高气温(分别位于列表a,b),那么此时如何寻找出气温和随时间(天)变化的某种规律?

a = [11, 17, 16, 11, 12, 11, 12, 6, 6, 7, 8, 9, 12, 15, 14, 17, 18, 21, 16, 17, 20, 14, 15, 15, 15, 19, 21, 22, 22, 22, 23]

b = [26, 26, 28, 19, 21, 17, 16, 19, 18, 20, 20, 19, 22, 23, 17, 20, 21, 20, 22, 15, 11, 15, 5, 13, 17, 10, 11, 13, 12, 13, 6]

from matplotlib import pyplot as plt
from matplotlib import font_manager

plt.figure(figsize=(20, 8), dpi=80)

myfont = font_manager.FontProperties(fname='C:/Windows/Fonts/simhei.ttf')

x_a = range(1, 32)
x_b = range(1+50, 32+50)
y_a = [11, 17, 16, 11, 12, 11, 12, 6, 6, 7, 8, 9, 12, 15, 14, 17,
       18, 21, 16, 17, 20, 14, 15, 15, 15, 19, 21, 22, 22, 22, 23]
y_b = [26, 26, 28, 19, 21, 17, 16, 19, 18, 20, 20, 19, 22, 23, 17,
       20, 21, 20, 22, 15, 11, 15, 5, 13, 17, 10, 11, 13, 12, 13, 6]

plt.scatter(x_a, y_a, label='3月份')
plt.scatter(x_b, y_b, label='10月份')


plt.legend(loc="upper left", prop=myfont)

x = list(x_a)+list(x_b)
x_ticks = ['3月{}日'.format(i) for i in x_a]
x_ticks += ['10月{}日'.format(i-50) for i in x_b]

plt.xticks(x[::3], x_ticks[::3], fontproperties=myfont, rotation=45)

plt.xlabel('日期', fontproperties=myfont)
plt.ylabel('最高温度', fontproperties=myfont)
plt.title('三月和十月每日最高温度变化', fontproperties=myfont)


plt.show()

绘制条形图

假设你获取到了2017年内地电影票房前20的电影(列表a)和电影票房数据(列表b),那么如何更加直观的展示该数据?
a = ["战狼2", "速度与激情8", "功夫瑜伽", "西游伏妖篇", "变形金刚5:最后的骑士", "摔跤吧!爸爸", "加勒比海盗5:死无对证", "金刚:骷髅岛", "极限特工:终极回归", "生化危机6:终章", "乘风破浪", "神偷奶爸3", "智取威虎山", "大闹天竺", "金刚狼3:殊死一战", "蜘蛛侠:英雄归来", "悟空传", "银河护卫队2", "情圣", "新木乃伊", ]

b = [56.01, 26.94, 17.53, 16.49, 15.45, 12.96, 11.8, 11.61, 11.28, 11.12, 10.49, 10.3, 8.75, 7.55, 7.32, 6.99, 6.88, 6.86, 6.58, 6.23] 单位:亿

横向条形图

from matplotlib import pyplot as plt
from matplotlib import font_manager

plt.figure(figsize=(20, 8), dpi=80)

myfont = font_manager.FontProperties(fname='C:/Windows/Fonts/simhei.ttf')


x = ["战狼2", "速度与激情8", "功夫瑜伽", "西游伏妖篇", "变形金刚5:最后的骑士", "摔跤吧!爸爸", "加勒比海盗5:死无对证", "金刚:骷髅岛", "极限特工:终极回归",
     "生化危机6:终章", "乘风破浪", "神偷奶爸3", "智取威虎山", "大闹天竺", "金刚狼3:殊死一战", "蜘蛛侠:英雄归来", "悟空传", "银河护卫队2", "情圣", "新木乃伊", ]

x = [i.replace(':', ':\n') for i in x]

y = [56.01, 26.94, 17.53, 16.49, 15.45, 12.96, 11.8, 11.61, 11.28,
     11.12, 10.49, 10.3, 8.75, 7.55, 7.32, 6.99, 6.88, 6.86, 6.58, 6.23]

plt.bar(range(len(x)), y)

plt.xticks(range(len(x)), x, fontproperties=myfont, rotation=45)

plt.xlabel('电影名', fontproperties=myfont)
plt.ylabel('票房(单位:亿)', fontproperties=myfont)
plt.title('2017年内地电影票房前20票房', fontproperties=myfont, fontsize=20)

plt.show()

纵向条形图

from matplotlib import pyplot as plt
from matplotlib import font_manager

plt.figure(figsize=(20, 8), dpi=80)

myfont = font_manager.FontProperties(fname='C:/Windows/Fonts/simhei.ttf')


x = ["战狼2", "速度与激情8", "功夫瑜伽", "西游伏妖篇", "变形金刚5:最后的骑士", "摔跤吧!爸爸", "加勒比海盗5:死无对证", "金刚:骷髅岛", "极限特工:终极回归",
     "生化危机6:终章", "乘风破浪", "神偷奶爸3", "智取威虎山", "大闹天竺", "金刚狼3:殊死一战", "蜘蛛侠:英雄归来", "悟空传", "银河护卫队2", "情圣", "新木乃伊", ]

y = [56.01, 26.94, 17.53, 16.49, 15.45, 12.96, 11.8, 11.61, 11.28,
     11.12, 10.49, 10.3, 8.75, 7.55, 7.32, 6.99, 6.88, 6.86, 6.58, 6.23]

plt.barh(range(len(x)), y)

plt.yticks(range(len(x)), x, fontproperties=myfont)

plt.xlabel('票房(单位:亿)', fontproperties=myfont)
plt.ylabel('电影名', fontproperties=myfont)
plt.title('2017年内地电影票房前20票房', fontproperties=myfont, fontsize=20)

plt.show()

绘制多个图例的条形图

假设你知道了列表a中电影分别在2017-09-14(b_14), 2017-09-15(b_15), 2017-09-16(b_16)三天的票房,为了展示列表中电影本身的票房以及同其他电影的数据对比情况,应该如何更加直观的呈现该数据?
a = ["猩球崛起3:终极之战", "敦刻尔克", "蜘蛛侠:英雄归来", "战狼2"]

b_16 = [15746, 312, 4497, 319]

b_15 = [12357, 156, 2045, 168]

b_14 = [2358, 399, 2358, 362]

from matplotlib import pyplot as plt
from matplotlib import font_manager

plt.figure(figsize=(20, 8), dpi=80)

myfont = font_manager.FontProperties(fname="C:/Windows/Fonts/simhei.ttf")


a = ["猩球崛起3:终极之战", "敦刻尔克", "蜘蛛侠:英雄归来", "战狼2"]
b_14 = [2358, 399, 2358, 362]
b_15 = [12357, 156, 2045, 168]
b_16 = [15746, 312, 4497, 319]

bar_width = 0.2
x_14 = list(range(len(a)))
x_15 = [i+bar_width for i in x_14]
x_16 = [i+bar_width*2 for i in x_14]

plt.bar(x_14, b_14, width=bar_width, label='2017-09-14')
plt.bar(x_15, b_15, width=bar_width, label='2017-09-15')
plt.bar(x_16, b_16, width=bar_width, label='2017-09-16')

plt.legend()

plt.xticks(x_15, a, fontproperties=myfont)

plt.xlabel('电影', fontproperties=myfont)
plt.ylabel('票房', fontproperties=myfont)
plt.title('电影票房', fontproperties=myfont, fontsize=20)

plt.show()

绘制直方图

假设你获取了250部电影的时长(列表a中),希望统计出这些电影时长的分布状态(比如时长为100分钟到120分钟电影的数量,出现的频率)等信息,你应该如何呈现这些数据?

a = [131, 98, 125, 131, 124, 139, 131, 117, 128, 108, 135, 138, 131, 102, 107, 114, 119, 128, 121, 142, 127, 130, 124, 101, 110, 116, 117, 110, 128, 128, 115, 99, 136, 126, 134, 95, 138, 117, 111, 78, 132, 124, 113, 150, 110, 117, 86, 95, 144, 105, 126, 130, 126, 130, 126, 116, 123, 106, 112, 138, 123, 86, 101, 99, 136, 123, 117, 119, 105, 137, 123, 128, 125, 104, 109, 134, 125, 127, 105, 120, 107, 129, 116, 108, 132, 103, 136, 118, 102, 120, 114, 105, 115, 132, 145, 119, 121, 112, 139, 125, 138, 109, 132, 134, 156, 106, 117, 127, 144, 139, 139, 119, 140, 83, 110, 102, 123, 107, 143, 115, 136, 118, 139, 123, 112, 118, 125, 109, 119, 133, 112, 114, 122, 109, 106, 123, 116, 131, 127, 115, 118, 112, 135, 115, 146, 137, 116, 103, 144, 83, 123, 111, 110, 111, 100, 154, 136, 100, 118, 119, 133, 134, 106, 129, 126, 110, 111, 109, 141, 120, 117, 106, 149, 122, 122, 110, 118, 127, 121, 114, 125, 126, 114, 140, 103, 130, 141, 117, 106, 114, 121, 114, 133, 137, 92, 121, 112, 146, 97, 137, 105, 98, 117, 112, 81, 97, 139, 113, 134, 106, 144, 110, 137, 137, 111, 104, 117, 100, 111, 101, 110, 105, 129, 137, 112, 120, 113, 133, 112, 83, 94, 146, 133, 101, 131, 116, 111, 84, 137, 115, 122, 106, 144, 109, 123, 116, 111, 111, 133, 150]

from matplotlib import pyplot as plt
from matplotlib import font_manager


plt.figure(figsize=(20, 8), dpi=80)

myfont = font_manager.FontProperties(fname="C:/Windows/Fonts/simhei.ttf")

a = [131,  98, 125, 131, 124, 139, 131, 117, 128, 108, 135, 138, 131, 102, 107, 114, 119, 128, 121, 142, 127, 130, 124, 101, 110, 116, 117, 110, 128, 128, 115,  99, 136, 126, 134,  95, 138, 117, 111, 78, 132, 124, 113, 150, 110, 117,  86,  95, 144, 105, 126, 130, 126, 130, 126, 116, 123, 106, 112, 138, 123,  86, 101,  99, 136, 123, 117, 119, 105, 137, 123, 128, 125, 104, 109, 134, 125, 127, 105, 120, 107, 129, 116, 108, 132, 103, 136, 118, 102, 120, 114, 105, 115, 132, 145, 119, 121, 112, 139, 125, 138, 109, 132, 134, 156, 106, 117, 127, 144, 139, 139, 119, 140,  83, 110, 102, 123, 107, 143, 115, 136, 118, 139, 123, 112,
     118, 125, 109, 119, 133, 112, 114, 122, 109, 106, 123, 116, 131, 127, 115, 118, 112, 135, 115, 146, 137, 116, 103, 144,  83, 123, 111, 110, 111, 100, 154, 136, 100, 118, 119, 133, 134, 106, 129, 126, 110, 111, 109, 141, 120, 117, 106, 149, 122, 122, 110, 118, 127, 121, 114, 125, 126, 114, 140, 103, 130, 141, 117, 106, 114, 121, 114, 133, 137,  92, 121, 112, 146,  97, 137, 105,  98, 117, 112,  81,  97, 139, 113, 134, 106, 144, 110, 137, 137, 111, 104, 117, 100, 111, 101, 110, 105, 129, 137, 112, 120, 113, 133, 112,  83,  94, 146, 133, 101, 131, 116, 111,  84, 137, 115, 122, 106, 144, 109, 123, 116, 111, 111, 133, 150]

# 组距
d = 3
# 计算组数
num_bins = (max(a)-min(a))//d

# 通过normed属性,设置y轴显示百分比
plt.hist(a, num_bins, normed=True)

plt.xticks(range(min(a), max(a)+d, d))

plt.xlabel('电影时长(分钟)', fontproperties=myfont)
plt.ylabel('占比(%)', fontproperties=myfont)
plt.title('电影时长在各个时间段的比例', fontproperties=myfont, fontsize=20)

# 绘制网格
plt.grid()

plt.show()

更多绘图工具

plot:可视化工具中的gitbub,相比于matplotlib更加简单,图形更加漂亮,同时兼容matplotlibpandas

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容

  • 目前能ping通的IP:216.58.193.51 59.18.44.245 59.18.44.53 59.18....
    StevenZack阅读 1,604评论 0 0
  • matplotlib的基本使用——学习笔记 1、matplotlib简介 ​ matplotlib是Pytho...
    严简易阅读 1,160评论 0 2
  • 数据分析 1.matplotlib折线图 matplotlib:最流行的Python底层绘图库,主要做数据可视化图...
    Aptitude阅读 663评论 0 1
  • 发现今天的自己又浪费的一天,给自己找的借口竟让是感冒。 早上起来,发现外面一片的白色,三月的哈尔滨,却是飘起了雪花...
    yi84095阅读 175评论 1 0
  • 夏天,是绿色的清新;也是蓝色的,像海的颜色,有一种忧郁。 儿时的夏天,不在乎炎热,不在乎会被晒黑,随着早升起的太阳...
    阿瑟流士阅读 364评论 0 0