impala + kudu一些优化心得

用了几次impala + kudu做大数据实时计算场景,一路踏坑过来,这里分享踏坑经验
  • 一开始需要全量导入kudu,这时候我们先用sqoop把关系数据库数据导入临时表,再用impala从临时表导入kudu目标表

由于sqoop从关系型数据直接以parquet格式导入hive会有问题,这里默认hive的表都是text格式;每次导完到临时表,需要做invalidate metadata 表操作,不然后面直接导入kudu的时候会查不到数据

  • 除了查询,建议所有impala操作都在impala-shell而不在hue上面执行
  • impala并发写入kudu的时候,数据量比较大的时候

这时候kudu配置参数 --memory_limit_hard_bytes能大点就大点,因为kudu写入首先保存再内存里面,到一定阀值才溢写到磁盘,这个是直接最能提高写的方法;

当然不是所有机器都有那么多资源,可以把--maintenance_manager_num_threads 这个参数稍微调大,需要调试,提高数据从内存写入磁盘的效率

  • impala查询kudu

首先所有表做完全量的etl操作,必须得执行compute stats 表名,不然impala执行sql生成的计划执行数评估的内存不准确,容易评估错误导致实际执行不了

kudu表最好不要做任何压缩,保证原始扫描性能发挥最好;假如对查询性能要求比存储要求高的话;大部分企业对实时查询效率要求高,而且存储成本毕竟低;

kudu针对大表要做好分区,最好range和hash一起使用,前提是主键列包含能hash的id,但range分区一定要做好,经验告诉我一般是基于时间;

查询慢的sql,一般要拿出来;方便的话做下explain,看下kudu有没有过滤部分数据关键字kudu predicates;假如sql没问题,那在impala-shell执行这个sql,最后执行summray命令,重点查看单点峰值内存和时间比较大的点,对相关的表做优化,解决数据倾斜问题

  • kudu数据删除

大表不要delete,不要犹豫直接drop,在create吧;磁盘空间会释放的

  • 关于impala + kudu 和 impala + parquet

网上很多分析impala + kudu 要比 impala + parquet 优越很多;谁信谁XB;

首先两个解决的场景不一样,kudu一般解决实时,hive解决的是离线(通常是T + 1或者 T -1)

hive基于hdfs,hdfs已经提供一套较为完善的存储机制,底层数据和文件操作便利;安全性,可扩展性都比kudu强很多,最重要parquet + impala效率要比kudu高,数仓首选是它

kudu最大优势是能做类似关系型数据库一样的操作,insert, update, delete,这样热点的数据可以存储在kudu里面并随时做更新

  • 最后谈到的实时同步工具

同步工具我们这里使用streamsets,一个拖拉拽的工具,非常好用;但内存使用率高,通过jconsole我们发现,所有任务同时启动;JVM新生代的内容几乎都跑到老年代了,GC没来的及,就内存溢出了;后面单独拿几台服务器出来做这个ETL工具,jvm配置G1垃圾回收器

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容

  • 世人常说这就是人生四苦:看不透,舍不得,输不起,放不下。 《诗•邶风•谷风》有诗曰:“谁为荼苦,其甘如荠。”其意...
    大亲家阅读 910评论 0 1
  • 学员作业测试 123 321 (1)massive mass sive (2)in- (3)ex- 测试 测试 测...
    Bob_9527阅读 262评论 0 0
  • 首先简单说下为什么要使用作用域插槽,有时候需要组件带有一个可从子组件获取数据的可复用的插槽。 下面还是通过例子来讲...
    清风伴我行阅读 942评论 0 0
  • 不知何时起,我喜欢一个人。安安静静,没有喧嚣,吵闹。独自一人安安静静的生活,然后悄无声息的离去。我是一个不够积极的...
    帅丶琦阅读 238评论 1 2
  • 会有那么些瞬间,让你对那么些个人,很失望。也会有那么些瞬间,让你对自己的所作所为,感到愧疚。 2017年8月6日 ...
    18张雪碧阅读 485评论 3 1