LSTM网络层详解及其应用实例

上一节我们介绍了RNN网络层的记忆性原理,同时使用了keras框架听过的SimpleRNN网络层到实际运用中。然而使用的效果并不理想,主要是因为simpleRNN无法应对过长单词串的输入,在理论上,当它接收第t个输入时,它应该能把前面好几个单词的处理信息记录下来,但实际上它无法把前面已经处理过的单词信息保留到第t个单词输入的时刻。

出现这种现象的原因叫"Vanishing gradian problem",我们以前说要更新某个链路权重中,需要对它求偏导数,但在某种情况下,我们求得的偏导数可能接近于0,这样一来链路权重就得不到有效更新,因为当权重加上一个很接近于0的偏导数时,它不会产生显著的变化。这种现象也会出现在feed forward网络,当网络有很多层时,我们会把误差进行回传,但层次过多时,回传的误差会不断的被“冲淡”,直到某个神经元接收到回传的误差是,该误差的值几乎与0差不多大小,这样求出的偏导数也接近与0,因此链路权重就得不到有效的更新。

这种现象被人工置顶的三位大牛Hochreiter,Schmidhuber,Bengio深入研究后,他们提出一种新型网络层叫LSTM和GRU以便接近偏导数接近于0使得链路权重得不到有效更新的问题。LSTM的全称是Long Short term memory,也就是长短程记忆,它其实是我们上节使用的simpleRNN变种,设想当单词一个个输入网络时,旁边还有一条传送带把相关信息也输入网络,如下图:

屏幕快照 2018-09-07 下午6.10.13.png

这里我们多增加一个变量C来记录每一个单词被网络处理后遗留下来的信息,网络的激活函数还是不变,但是我们要增加多几个变量来计算变量C:
i_t = activation(dot(state_t, Ui) + dot(input_t, wi) + bi)
f_t =activation(dot(state_t, Uf) + dot(input_t, wf) + bf)
k_t=activation(dot(state_t, Uk) + dot(input_t, wk) + bk)
那么C的更新方式为:
C = i_t * k_t + Cf_t
初看起来,逻辑很难理解,为何我们要增加这些不知所云的步骤呢,它蕴含着较为复杂的设计原理和数学原理,简单来说C
f_t目的是增加一些噪音,让网络适当的“忘记”以前计算留下了的信息,i_t*k_t是让网络增强最近几次计算所遗留下来的信息 ,这里我们不深究,只要囫囵吞枣,知道新增加的变量C是用来帮助网络增强对以前信息处理的记忆,并指导该变量如何更新就好,接下来我们看看LSTM网络的具体应用实例:

from keras.layers import LSTM

model = Sequential()
model.add(Embedding(max_features, 32))
model.add(LSTM(32))
model.add(Dense(1, activation='sigmoid'))

model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc'])
history = model.fit(input_train, y_train, epochs=10, batch_size=128, validation_split=0.2)

我们继续使用上一节的数据作为网络输入,上面代码运行后,我们再将它的训练结果绘制出来,结果如下:

屏幕快照 2018-09-11 下午4.26.15.png

上一节我们使用SimpleRNN网络层时,网络对校验数据的判断准确率为85%左右,这里我们使用LSTM网络层,网络对校验数据的准确率可以提升到89%,这是因为LSTM比SimpleRNN对网络以期出来过的数据有更好的“记忆”功能,更能将以前处理过的单词与现在处理的单词关联起来。

更详细的讲解和代码调试演示过程,请点击链接

更多技术信息,包括操作系统,编译器,面试算法,机器学习,人工智能,请关照我的公众号:


这里写图片描述
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,723评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,485评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,998评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,323评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,355评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,079评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,389评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,019评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,519评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,971评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,100评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,738评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,293评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,289评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,517评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,547评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,834评论 2 345

推荐阅读更多精彩内容