Description
Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
Each number in C may only be used once in the combination.
Note:
All numbers (including target) will be positive integers.
The solution set must not contain duplicate combinations.
For example, given candidate set [10, 1, 2, 7, 6, 1, 5] and target 8,
A solution set is:
[
[1, 7],
[1, 2, 5],
[2, 6],
[1, 1, 6]
]
Solution
DFS
只需要在Combination Sum的基础上稍作变换就好了呀。
class Solution {
public List<List<Integer>> combinationSum2(int[] candidates, int target) {
List<List<Integer>> combinations = new ArrayList<>();
if (candidates == null || candidates.length < 1) return combinations;
Arrays.sort(candidates);
List<Integer> combination = new ArrayList<>();
combinationSumRecur(candidates, 0, target, combination, combinations);
return combinations;
}
public void combinationSumRecur(int[] candidates,
int begin,
int target,
List<Integer> combination,
List<List<Integer>> combinations) {
// important to judge this first, because begin could be out of range
if (target == 0) {
combinations.add(new ArrayList<>(combination));
return;
}
if (begin >= candidates.length || target < 0) {
return;
}
int count = 1;
while (begin + count < candidates.length
&& candidates[begin] == candidates[begin + count]) {
++count;
}
combinationSumRecur(candidates, begin + count, target, combination, combinations);
int k = 0;
while (k < count && candidates[begin] <= target) {
combination.add(candidates[begin]);
target -= candidates[begin];
combinationSumRecur(candidates, begin + count, target, combination, combinations);
++k;
}
while(k-- > 0) {
combination.remove(combination.size() - 1);
}
}
}