spark整合elasticsearch两种方式
1.自己生成_id等元数据
2.使用ES默认生成
引入对应依赖
<dependency>
<groupId>org.elasticsearch</groupId>
<artifactId>elasticsearch-spark-13_2.10</artifactId>
<version>5.0.1</version>
</dependency>
生成元数据方式
import org.apache.spark.{SparkConf, SparkContext}
import org.elasticsearch.spark._
import utils.PropertiesUtils
import scala.collection.immutable
import scala.collection.mutable.ListBuffer
object Spark_ES_WithMeta {
val buffer = new ListBuffer[Tuple2[String,immutable.Map[String,String]]]
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("Custmer_Statistics").setMaster("local[2]")
conf.set("es.nodes","rmhadoop01,rmhadoop02,rmhadoop03");
conf.set("es.port","9200");
conf.set("es.index.auto.create", "true");
val sc = new SparkContext(conf)
//读取本地文件
val result = sc.textFile("C:/work/ideabench/SparkSQL/data/es/gd_py_corp_sharehd_info.txt")
.map(_.split("\\t"))
.foreach(d =>{
if(PropertiesUtils.getStringByKey("gd_py_corp_sharehd_info").equals("one2many")){
val map = Map("id"->d(0),
"batch_seq_num"->d(1),
"name"->d(2),
"contributiveFund"->d(3),
"contributivePercent"->d(4),
"currency"->d(5),
"contributiveDate"->d(6),
"corp_basic_info_id"->d(7),
"query_time"->d(8)
)
buffer.append((d(0),map))
//buffer
}else if(PropertiesUtils.getStringByKey("gd_py_corp_sharehd_info").equals("one2one")){
//Map(d(1) ->gd_py_corp_sharehd_info(d(0), d(1), d(2), d(3), d(4), d(5), d(6), d(7), d(8)))
}
} )
sc.makeRDD(buffer).saveToEsWithMeta("spark/guofei_gd_py_corp_sharehd_info")
}
/**
* 使用模板类描述表元数据信息
*
*/
case class gd_py_corp_sharehd_info(id:String,batch_seq_num:String,
name:String,contributiveFund:String,
contributivePercent:String,currency:String,
contributiveDate:String,corp_basic_info_id:String,
query_time:String)
}
ES-UI界面
使用ES默认元数据方式
import org.apache.spark.sql.SQLContext
import org.apache.spark.{SparkConf, SparkContext}
import org.elasticsearch.spark.sql._
object SparkSQL_ES {
/**
* 使用模板类描述表元数据信息
*
*/
case class gd_py_corp_sharehd_info(id:String,batch_seq_num:String,
name:String,contributiveFund:String,
contributivePercent:String,currency:String,
contributiveDate:String,corp_basic_info_id:String,
query_time:String)
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("Custmer_Statistics").setMaster("local[2]")
conf.set("es.nodes","192.168.20.128");
conf.set("es.port","9200");
conf.set("es.index.auto.create", "true");
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
//RDD隐式转换成DataFrame
import sqlContext.implicits._
//读取本地文件
val gd_py_corp_sharehd_infoDF = sc.textFile("C:/work/ideabench/SparkSQL/data/es/gd_py_corp_sharehd_info.txt")
.map(_.split("\\t"))
.map(d => gd_py_corp_sharehd_info(d(0), d(1), d(2), d(3), d(4), d(5), d(6), d(7), d(8)))
.toDF()
//注册表
gd_py_corp_sharehd_infoDF.registerTempTable("gd_py_corp_sharehd_info")
/**
*
*/
val result = sqlContext
.sql("select * from gd_py_corp_sharehd_info limit 10")
.toDF()
result.saveToEs("spark/gd_py_corp_sharehd_info")
}
}
参考文章
官网:https://www.elastic.co/guide/en/elasticsearch/hadoop/current/spark.html