动手写爬虫(2):爬取58同城二手物品信息

工作这么多年一直想学习一下爬虫技术,各种尝试之后发现学习的最好方式就是直接开干:那就找一个想爬的东西开始爬啊!
从模仿用正则表达式爬取,到现在通过网络课程学习使用BeatifulSoup库来爬取信息,大概花了一个月左右的零散时间,感觉还是有些进步的,得记录一下,现在就分享一下58同城二手物品信息的爬取过程。

1.分析爬取目标页面与目标

58同城二手物品页面开始,爬取该页面中二手物品详细信息。
详细信息分布在子页面中,故,需要先从主页面获取子页面的链接,再从子页面中获取我们的目标信息。这样把爬取过程分成了两部分:
- 爬主页面获取二手物品子页面的信息;
-爬取子页面(页面示例)获取对应二手物品的标题、价格、成色、区域、发布日期、类别等信息。
对应的,我们查看对应的页面,**确定所需要爬取的元素在对应页面中所处的位置、确定获取方式。

2. 爬取主页面中的二手物品链接

通过chrome检查主页面在对应二手物品标题位置右键、检查,查看链接对应的网页元素位置,复制对应的位置表述,如下:

复制结果即是对应的链接位置表述:

infolist > table:nth-child(7) > tbody > tr:nth-child(2) > td.t > a

由于网页构成中td标签、t样式下的a标签对应的内容都是子页面链接,故可以用‘td.t > a’作为筛选条件,通过BeautifulSoup中的select方法对其进行筛选。代码见最后部分。(注:代码中对业面中的一些特殊物品类别进行了剔除,包括转转页面、推荐信息部分等)

3. 爬取子页面中物品详细信息

将上一步获取的子页面链接传递给
过程与提取主页面中链接是一样的,不过这次需要提取的元素多了一些,我们按上述过程逐个检查,确定元素对应的筛选表述。
最后通过get_text等方式,将所需信息从爬取的元素中提取出来。

4.完整的python代码

from bs4 import BeautifulSoup
import time
import requests

url_58 = 'http://bj.58.com/pbdn/0/'

def get_url_list(url):
    web_data = requests.get(url)
    soup = BeautifulSoup(web_data.text,'lxml')
    url = soup.select('td.t > a[class="t"]')
    url_list = ''
    for link in url:
        link_i = link.get('href')
        if 'zhuanzhuan'in link_i:
           pass
        else:
            if 'jump' in link_i:
                pass
            else:
                url_list = url_list + '\n'+link_i
    print('urllist',url_list)
    return url_list

def get_info():
    url_list = get_url_list(url_58)
    for url in url_list.split():
        time.sleep(1)
        web_data = requests.get(url)
        soup = BeautifulSoup(web_data.text,'lxml')

        type = soup.select('#header > div.breadCrumb.f12 > span:nth-of-type(3) > a')
        title = soup.select('div.col_sub.mainTitle > h1')
        date = soup.select('li.time')
        price = soup.select('div.person_add_top.no_ident_top > div.per_ad_left > div.col_sub.sumary > ul > li:nth-of-type(1) > div.su_con > span.price.c_f50')
        fineness = soup.select('div.col_sub.sumary > ul > li:nth-of-type(2) > div.su_con > span')
        area = soup.select('div.col_sub.sumary > ul > li:nth-of-type(3) > div.su_con > span')

        #print(type,title,date,price,fineness,area)

        for typei,titlei,datei,pricei,finenessi,areai in zip(type,title,date,price,fineness,area):
            data = {
                'type':typei.get_text(),
                'title':titlei.get_text(),
                'date':datei.get_text(),
                'price':pricei.get_text(),
                'fineness':(finenessi.get_text()).strip(),
                'area':list(areai.stripped_strings)
            }
            print(data)

get_info()

5.最终结果样例

{'area': ['通州', '-', '物资学院路'], 'title': 'iPad mini 2 Wi-Fi 16G 白色 港版', 'date': '2016-05-07', 'type': '北京二手平板电脑', 'fineness': '-', 'price': '1200'}
{'area': ['西城', '-', '西单'], 'title': 'iPad2 16G 国行 WiFi 平板电脑', 'date': '2016-05-07', 'type': '北京二手平板电脑', 'fineness': '-', 'price': '900'}

6.总结

其实从网页中提取对应元素并不复杂,麻烦的是反爬、对目标信息进行提取(get_text、stripped_strings等等方法还需要继续研究一下),以及对整个爬取过程的控制:通常我们要获取的信息都不止在一个页面上,这就需要一个好的过程调度,保证爬取效率。

以上仅供学习,请勿用于商业用途。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,324评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,303评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,192评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,555评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,569评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,566评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,927评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,583评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,827评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,590评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,669评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,365评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,941评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,928评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,159评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,880评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,399评论 2 342

推荐阅读更多精彩内容