从毫秒级的分子反应到以年为单位的群体心理学研究,脑相关科学在时间和空间两个坐标上都有很大的跨度。
神经环路(circuit)是指大脑中由神经元相互连接形成的、传递某种特定信息的通路。最简单的神经环路就是大家熟悉的膝跳反射环路:锤击膝盖下方后,感觉信息从肌梭中产生,经过感觉神经元进入脊髓;接着运动信息由motor neuron传出脊髓一直到肌肉,控制股四头肌收缩和二头肌舒张。中枢神经系统的神经环路往往比膝跳反射复杂得多,不仅涉及多个脑区,更具有复杂的连接结构。
不论一个反射有多么复杂,它都由三部分组成:输入(感觉信息),中间处理和输出(行为)。简单如膝跳反射环路,其输入是对膝盖附近的敲击,而输出是肌肉的收缩引起的踢腿行为;复杂如果蝇的求偶行为,其输入是特定的环境、时间、雌果蝇的存在等,而输出是跟随、唱歌、闻嗅等一系列追求雌果蝇的行为。输入和输出往往是容易控制和观察的,而神经系统就像一个黑匣子,我们只知道其输入和输出,却对其工作的机制一无所知。
为了探明神经环路的真相,生物学积累了大量的方法,用以解决下列问题:某神经环路由哪些成分组成?每个组分的功能是什么?这些功能是如何实现的?
要分析神经环路的组分以及它们的功能,也就是从大脑中所有一千亿个神经元中,区分出与某特定功能有关的那些。这就需要我们把神经元的某些特征与神经系统的某些功能对应起来。神经元有什么特征?形态并不足以区分不同的环路(尽管有时外貌特征是有用的,比如中脑黑质的多巴胺能神经元颜色较深)。一般而言,最具有分辨率的特征有两种:①基因表达的时空特征,毕竟这是个体中任何细胞之间产生区别的根本原因;②动作电位发放和突触传递的时空特征,这是神经系统发挥功能的基础。对于基因表达的特性,我们可以使用分子生物学/遗传学的手段探测;而对于动作电位的发放,我们有电生理的方法探测。
接下来,有了特征,我们用什么方法将它们和神经系统的特定功能对应起来呢?为了更形象地解释,我们用果蝇的求偶行为作为例子。一种思路是,①在果蝇求偶的过程中观察其大脑,看看哪些神经元依次进行了活动,从而可以简单地认为这些神经元与求偶相关。这种思路的问题是,如何在活的果蝇中,以高时空分辨率,记录下大脑中每个神经元的活动——这显然是不现实的,但我们可以用各种技巧去接近这个目标,稍后叙述。另一种思路是,②抑制或者增强某些神经元的功能,然后观察果蝇的求偶行为受到了什么样的影响——是增强了(像发情期的泰迪一样对空气交配)还是减弱了(对性感的雌果蝇不屑一顾)。这种方法不需要进行实时记录,只需要轻松地观察行为即可;它的问题在于,如何抑制或者增强特定的一部分神经元的功能。
让我们从第二种思路说起。当我们拔掉网卡,电脑就不能上网了,于是我们认为网卡的功能是连接网络。同样地,对大脑也可以用同样的方法研究。二十世纪中叶一位代号H.M.的病人被手术切除了海马,从此很难再形成新的(陈述性)记忆,这极大帮助了科学界对记忆相关环路的理解。然而手术的分辨率是有限的,而且只能切除空间上相近的一部分脑组织。现代生物学既可以利用分子生物学/遗传学方法来永久改变神经元活动(从出生到死亡),也可以利用化学控制、温度控制和光控制来实时操作神经元(数秒至数小时)。
永久地改变神经元活动的方法主要是遗传操作,即减少某些内源性基因的表达和增强某些内源性(或者增加某些外源性)基因的表达。抑制基因表达既可以通过正向遗传学筛选,也可以用反向遗传学的方法,比如同源重组介导的knock out,以及RNAi介导的knock down。增加外源性基因可以通过转基因或者knock in的方法,而过表达内源性基因可以在目标基因上游增加增强子/启动子调控元件。
对神经元的操作有时候需要在特定的时空区段内进行。双表达系统,如Cre/LoxP、Gal4/UAS等提供了模块化的、组织特异性的遗传操作手段,从而提高了操作的空间分辨率。病毒注射、光遗传学、化学遗传学等方法提供了暂时改变特定区域基因表达特性的的手段,从而提高了操作的时间分辨率。
接下来再说第一种思路。如何在活体中观察神经元的活动?活动的神经元与不活动的神经元区别在哪?活跃的神经元中有密集的动作电位,大量离子通道的开放和跨膜离子流。电生理技术记录前者,而钙成像技术(GECI,genetically encoded calcium indicators)(最常用GCaMP)记录后者。GEVI记录膜电位的变化,相较GECI有更高的时间分辨率,但荧光强度不足。上述成像技术的另一个问题是,活体厚厚的脑组织对显微镜是巨大的挑战。目前最先进的双光子技术也只能穿透500mm左右的组织并保持分辨率。另外,fMRI记录活跃神经元附近加速的血流,尽管其空间分辨率很低,但作为一种非侵入式的方法在人脑研究中有重要意义。
通过上述两种思路,我们往往会得出形如这样的结果:“A区域和B区域(的xxx神经元)可能与X行为有关,C区域也对该行为有一些影响……”。可是这些区域究竟是如何连接的?区域的边界在哪里?每个区域中究竟有哪些种类的神经元?这些问题在上述两种实验中很难得到完整的解答。这时候就需要解剖学的方法,来对脑进行静态的观察。
如何将特定的细胞标记出来,从而可以将它们和周围细胞区分开来?染色是生物中常用的一种方法。将GFP转进小鼠中,可以标注某些特定细胞类型。MARCM(mosaic analysis with repressible cell marker)技术可以使一簇同种细胞中大部分细胞的荧光色素失活,只留下小部分具有荧光,从而更清晰地观察单个细胞的形态。Photo-convertible/switchable GFP可以用光诱导特异性标注某一个神经元;CaMPARI(calcium-modulated photoactivable ratiometric integrator)能特异性标注出活动的神经元,为活体动态记录提供了工具。
除了观察单个细胞的形态,我们还希望了解神经元之间连接的情况。GRASP技术和Functional Mapping能检验两个神经元之间有无连接关系,而基于化学物质或病毒的跨膜tracer则可以找出某个神经元的上游或下游神经元。
上述就是神经环路研究的常用分子生物学方法了。
reference
Bassett, D., Sporns, O. Network neuroscience. Nat Neurosci 20, 353–364 (2017) doi:10.1038/nn.4502