flink1.11针对反压背压的优化

背景: 

最近flink发布新版本1.11, 除了优化旧版本已有的缺陷, 还增加了一些新功能,  其中我发现有一些改变适合用于现在负责的flink项目 

我们当前的flink项目的问题是生成checkpoint失败较多,造成checkpoint失败的原因是某几个subtask的快照超时导致整体的checkpoint生成失败,随着每天的处理的任务越多, 这个问题越发突显出来, 而后果是:

引用的答案:

目前的 Checkpoint 算法在大多数情况下运行良好,然而当作业出现反压时,阻塞式的 Barrier 对齐反而会加剧作业的反压,甚至导致作业的不稳定。首先, Chandy-Lamport 分布式快照的结束依赖于 Marker 的流动,而反压则会限制 Marker 的流动,导致快照的完成时间变长甚至超时。无论是哪种情况,都会导致 Checkpoint 的时间点落后于实际数据流较多。这时作业的计算进度是没有被持久化的,处于一个比较脆弱的状态,如果作业出于异常被动重启或者被用户主动重启,作业会回滚丢失一定的进度。如果 Checkpoint 连续超时且没有很好的监控,回滚丢失的进度可能高达一天以上,对于实时业务这通常是不可接受的。更糟糕的是,回滚后的作业落后的 Lag 更大,通常带来更大的反压,形成一个恶性循环。

优化1: rebalance分区改为rescale分区

rebalance使用Round-ribon思想将数据均匀分配到各实例上。Round-ribon是负载均衡领域经常使用的均匀分配的方法,上游的数据会轮询式地分配到下游的所有的实例上。如下图所示,上游的算子会将数据依次发送给下游所有算子实例。


rebalance分区

dataStream.rebalance()

rescale与rebalance很像,也是将数据均匀分布到各下游各实例上,但它的传输开销更小,因为rescale并不是将每个数据轮询地发送给下游每个实例,而是就近发送给下游实例。

dataStream.rescale()


rescale分区1

如上图所示,当上游有两个实例时,上游第一个实例将数据发送给下游第一个和第二个实例,上游第二个实例将数据发送给下游第三个和第四个实例,相比rebalance将数据发送给下游每个实例,rescale的传输开销更小。下图则展示了当上游有四个实例,上游前两个实例将数据发送给下游第一个实例,上游后两个实例将数据发送给下游第二个实例。


rescale分区2

优化2: 升级flink1.11, 使用Unaligned Checkpoint + rocksdb生成Checkpoint

flink1.11新特性相关介绍: https://www.h5w3.com/33867.html

Rocksdb state ssd:  使用rocksdb缓存checkpoint, 并且从原来的全量生成改为增量生成的方式, 速度更快

Unaligned Checkpoint

Flink 现有的 Checkpoint 机制下,每个算子需要等到收到所有上游发送的 Barrier 对齐后才可以进行 Snapshot 并继续向后发送 barrier。在反压的情况下,Barrier 从上游算子传送到下游可能需要很长的时间,从而导致 Checkpoint 超时的问题。

针对这一问题,Flink 1.11 增加了 Unaligned Checkpoint 机制。开启 Unaligned Checkpoint 后当收到第一个 barrier 时就可以执行 checkpoint,并把上下游之间正在传输的数据也作为状态保存到快照中,这样 checkpoint 的完成时间大大缩短,不再依赖于算子的处理能力,解决了反压场景下 checkpoint 长期做不出来的问题。

可以通过 env.getCheckpointConfig().enableUnalignedCheckpoints();开启unaligned Checkpoint 机制。


unaligned checkpoint生成原理1


unaligned checkpoint生成原理2

总的来说, 新特性一定程度解决了Checkpoint与反压的耦合

分析过程: 

首先测查算子间是否存在反压, 在flink web ui后台可以查看:


flink web ui查看反压

我的flink作业没有反压的问题

定位问题的原因是: 部分几个subtask处理速度跟不上, 导致barrier流向慢, input缓冲区占满, barrier对齐不了, 导致整体的checkpoint生成失败

flink作业operator处理数据的效率不均的原因主要是:

数据的多样性: 不同数据的类型或大小不一致, 导致处理的时间不一致,

如果使用了rebalance分区策略, 还是会负载均衡地分配到每个subtask上, 本来负载高的subtask还是会发配到任务处理, 导致了恶性循环

Flink 现有的物理分区策略全是静态的负载均衡策略,没有动态根据负载能力进行负载均衡的策略

未升级之前: 

flink1.9 aligned checkpoint

网上看到一篇分析得很好的文章, 恰好就是现在内容引入出现的问题: Flink 中的木桶效应:单个 subtask 卡死导致整个任务卡死  建议大家看一看`~

引用如下: 


单个 subtask 卡死的情况

代码实现:  略过, 可以参考官方文档

优化后的效果:

flink 1.11 unaligned checkpoint

参考文献:

Flink 1.11 Unaligned Checkpoint 解析

Flink 中的木桶效应:单个 subtask 卡死导致整个任务卡死

flink消费kafka时出现数据倾斜的原因和处理方式

Flink中的反压问题

Flink ResultPartition分析

Flink 原理与实现:如何处理反压问题

Flink 原理与实现:如何处理反压问题

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,937评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,503评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,712评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,668评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,677评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,601评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,975评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,637评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,881评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,621评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,710评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,387评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,971评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,947评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,189评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,805评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,449评论 2 342