常见限流算法

计数器法

计数器法是限流算法里最简单也是最容易实现的一种算法。比如我们规定,对于A接口来说,我们1分钟的访问次数不能超过100个。那么我们可以这么做:在一开始的时候,我们可以设置一个计数器counter,每当一个请求过来的时候,counter就加1,如果counter的值大于100并且该请求与第一个 请求的间隔时间还在1分钟之内,那么说明请求数过多;如果该请求与第一个请求的间隔时间大于1分钟,且counter的值还在限流范围内,那么就重置 counter。

缺点:当在间隔时间1分钟内,前30s流量巨大,直接达到阈值,容易造成系统宕机,导致后面30s系统不可以,避免不了突发流量。

image.png

具体算法的伪代码:

/**
 * 最简单的计数器限流算法
 */
public class Counter {
    public long timeStamp = System.currentTimeMillis();  // 当前时间
    public int reqCount = 0;  // 初始化计数器
    public final int limit = 100; // 时间窗口内最大请求数
    public final long interval = 1000 * 60; // 时间窗口ms

    public boolean limit() {
        long now = System.currentTimeMillis();
        if (now < timeStamp + interval) {
            // 在时间窗口内
            reqCount++;
            // 判断当前时间窗口内是否超过最大请求控制数
            return reqCount <= limit;
        } else {
            timeStamp = now;
            // 超时后重置
            reqCount = 1;
            return true;
        }
    }
}

固定时间窗口算法

首先维护一个计数器,将单位时间段当做一个窗口,计数器记录这个窗口接收请求的次数。
假设单位时间是1秒,限流阀值为3。在单位时间1秒内,每来一个请求,计数器就加1,如果计数器累加的次数超过限流阀值3,后续的请求全部拒绝。等到1s结束后,计数器清0,重新开始计数。

缺点

  1. 一段时间内(不超过时间窗口)系统服务不可用。比如窗口大小为1s,限流大小为100,然后恰好在某个窗口的第1ms来了100个请求,然后第2ms-999ms的请求就都会被拒绝,这段时间用户会感觉系统服务不可用

  2. 窗口切换时可能会产生两倍于阈值流量的请求。假设限流阀值为5个请求,单位时间窗口是1s,如果我们在单位时间内的前0.8-1s和1-1.2s,分别并发5个请求。虽然都没有超过阀值,但是如果算0.8-1.2s,则并发数高达10,已经超过单位时间1s不超过5阀值的定义啦,通过的请求达到了阈值的两倍。


    image.png

滑动时间窗口算法

滑动时间窗口,又称rolling window。为了解决计数器法统计精度太低的问题,引入了滑动窗口算法。下面这张图,很好地解释了滑动窗口算法:

image.png

在上图中,整个红色的矩形框表示一个时间窗口,在我们的例子中,一个时间窗口就是一分钟。然后我们将时间窗口进行划分,比如图中,我们就将滑动窗口划成了6格,所以每格代表的是10秒钟。每过10秒钟,我们的时间窗口就会往右滑动一格。每一个格子都有自己独立的计数器counter,比如当一个请求 在0:35秒的时候到达,那么0:30~0:39对应的counter就会加1。
计数器算法其实就是滑动窗口算法。只是它没有对时间窗口做进一步地划分,所以只有1格。
由此可见,当滑动窗口的格子划分的越多,那么滑动窗口的滚动就越平滑,限流的统计就会越精确。

具体算法的伪代码:

/**
 * 滑动时间窗口限流实现
 * 假设某个服务最多只能每秒钟处理100个请求,我们可以设置一个1秒钟的滑动时间窗口,
 * 窗口中有10个格子,每个格子100毫秒,每100毫秒移动一次,每次移动都需要记录当前服务请求的次数
 */
public class SlidingTimeWindow {
    //服务访问次数,可以放在Redis中,实现分布式系统的访问计数
    Long counter = 0L;
    //使用LinkedList来记录滑动窗口的10个格子。
    LinkedList<Long> slots = new LinkedList<Long>();

    public static void main(String[] args) throws InterruptedException {
        SlidingTimeWindow timeWindow = new SlidingTimeWindow();

        new Thread(new Runnable() {
            @Override
            public void run() {
                try {
                    timeWindow.doCheck();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }).start();

        while (true){
            //TODO 判断限流标记
            timeWindow.counter++;
            Thread.sleep(new Random().nextInt(15));
        }
    }

    private void doCheck() throws InterruptedException {
        while (true) {
            slots.addLast(counter);
            if (slots.size() > 10) {
                slots.removeFirst();
            }
            //比较最后一个和第一个,两者相差100以上就限流
            if ((slots.peekLast() - slots.peekFirst()) > 100) {
                System.out.println("限流了。。");
                //TODO 修改限流标记为true
            }else {
                //TODO 修改限流标记为false
            }

            Thread.sleep(100);
        }
    }
}

漏桶算法

漏桶算法,又称leaky bucket。


image.png

首先,我们有一个固定容量的桶,有水流进来,也有水流出去。对于流进来的水来说,我们无法预计一共有多少水会流进来,也无法预计水流的速度。但是对于流出去的水来说,这个桶可以固定水流出的速率。而且,当桶满了之后,多余的水将会溢出。
我们将算法中的水换成实际应用中的请求,我们可以看到漏桶算法天生就限制了请求的速度。当使用了漏桶算法,我们可以保证接口会以一个常速速率来处理请求。所以漏桶算法天生不会出现临界问题。

缺点:因为漏桶算法的处理速度是平滑的,所以无法应对突发流量。
具体的伪代码如下:

/**
 * 漏桶限流算法
 */
public class LeakyBucket {
        public long timeStamp = System.currentTimeMillis();  // 当前时间
        public long capacity; // 桶的容量
        public long rate; // 水漏出的速度(每秒系统能处理的请求数)
        public long water; // 当前水量(当前累积请求数)

        public boolean limit() {
            long now = System.currentTimeMillis();
            water = Math.max(0, water - ((now - timeStamp)/1000) * rate); // 先执行漏水,计算剩余水量
            timeStamp = now;
            if ((water + 1) < capacity) {
                // 尝试加水,并且水还未满
                water += 1;
                return true;
            } else {
                // 水满,拒绝加水
                return false;
        }
    }
}

令牌桶算法

令牌桶算法,又称token bucket。同样为了理解该算法,我们来看一下该算法的示意图:


image.png

从图中我们可以看到,令牌桶算法比漏桶算法稍显复杂。首先,我们有一个固定容量的桶,桶里存放着令牌(token)。桶一开始是空的,token以 一个固定的速率r往桶里填充,直到达到桶的容量,多余的令牌将会被丢弃。每当一个请求过来时,就会尝试从桶里移除一个令牌,如果没有令牌的话,请求无法通过。
具体的伪代码如下:

/**
 * 令牌桶限流算法
 */
public class TokenBucket {
    public long timeStamp = System.currentTimeMillis();  // 当前时间
    public long capacity; // 桶的容量
    public long rate; // 令牌放入速度
    public long tokens; // 当前令牌数量

    public boolean grant() {
        long now = System.currentTimeMillis();
        // 先添加令牌
        tokens = Math.min(capacity, tokens + (now - timeStamp) * rate);
        timeStamp = now;
        if (tokens < 1) {
            // 若不到1个令牌,则拒绝
            return false;
        } else {
            // 还有令牌,领取令牌
            tokens -= 1;
            return true;
        }
    }
}
©著作权归作者所有,转载或内容合作请联系作者
禁止转载,如需转载请通过简信或评论联系作者。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,293评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,604评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,958评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,729评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,719评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,630评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,000评论 3 397
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,665评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,909评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,646评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,726评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,400评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,986评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,959评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,996评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,481评论 2 342

推荐阅读更多精彩内容