计数器法
计数器法是限流算法里最简单也是最容易实现的一种算法。比如我们规定,对于A接口来说,我们1分钟的访问次数不能超过100个。那么我们可以这么做:在一开始的时候,我们可以设置一个计数器counter,每当一个请求过来的时候,counter就加1,如果counter的值大于100并且该请求与第一个 请求的间隔时间还在1分钟之内,那么说明请求数过多;如果该请求与第一个请求的间隔时间大于1分钟,且counter的值还在限流范围内,那么就重置 counter。
缺点:当在间隔时间1分钟内,前30s流量巨大,直接达到阈值,容易造成系统宕机,导致后面30s系统不可以,避免不了突发流量。
具体算法的伪代码:
/**
* 最简单的计数器限流算法
*/
public class Counter {
public long timeStamp = System.currentTimeMillis(); // 当前时间
public int reqCount = 0; // 初始化计数器
public final int limit = 100; // 时间窗口内最大请求数
public final long interval = 1000 * 60; // 时间窗口ms
public boolean limit() {
long now = System.currentTimeMillis();
if (now < timeStamp + interval) {
// 在时间窗口内
reqCount++;
// 判断当前时间窗口内是否超过最大请求控制数
return reqCount <= limit;
} else {
timeStamp = now;
// 超时后重置
reqCount = 1;
return true;
}
}
}
固定时间窗口算法
首先维护一个计数器,将单位时间段当做一个窗口,计数器记录这个窗口接收请求的次数。
假设单位时间是1秒,限流阀值为3。在单位时间1秒内,每来一个请求,计数器就加1,如果计数器累加的次数超过限流阀值3,后续的请求全部拒绝。等到1s结束后,计数器清0,重新开始计数。
缺点:
一段时间内(不超过时间窗口)系统服务不可用。比如窗口大小为1s,限流大小为100,然后恰好在某个窗口的第1ms来了100个请求,然后第2ms-999ms的请求就都会被拒绝,这段时间用户会感觉系统服务不可用
-
窗口切换时可能会产生两倍于阈值流量的请求。假设限流阀值为5个请求,单位时间窗口是1s,如果我们在单位时间内的前0.8-1s和1-1.2s,分别并发5个请求。虽然都没有超过阀值,但是如果算0.8-1.2s,则并发数高达10,已经超过单位时间1s不超过5阀值的定义啦,通过的请求达到了阈值的两倍。
滑动时间窗口算法
滑动时间窗口,又称rolling window。为了解决计数器法统计精度太低的问题,引入了滑动窗口算法。下面这张图,很好地解释了滑动窗口算法:
在上图中,整个红色的矩形框表示一个时间窗口,在我们的例子中,一个时间窗口就是一分钟。然后我们将时间窗口进行划分,比如图中,我们就将滑动窗口划成了6格,所以每格代表的是10秒钟。每过10秒钟,我们的时间窗口就会往右滑动一格。每一个格子都有自己独立的计数器counter,比如当一个请求 在0:35秒的时候到达,那么0:30~0:39对应的counter就会加1。
计数器算法其实就是滑动窗口算法。只是它没有对时间窗口做进一步地划分,所以只有1格。
由此可见,当滑动窗口的格子划分的越多,那么滑动窗口的滚动就越平滑,限流的统计就会越精确。
具体算法的伪代码:
/**
* 滑动时间窗口限流实现
* 假设某个服务最多只能每秒钟处理100个请求,我们可以设置一个1秒钟的滑动时间窗口,
* 窗口中有10个格子,每个格子100毫秒,每100毫秒移动一次,每次移动都需要记录当前服务请求的次数
*/
public class SlidingTimeWindow {
//服务访问次数,可以放在Redis中,实现分布式系统的访问计数
Long counter = 0L;
//使用LinkedList来记录滑动窗口的10个格子。
LinkedList<Long> slots = new LinkedList<Long>();
public static void main(String[] args) throws InterruptedException {
SlidingTimeWindow timeWindow = new SlidingTimeWindow();
new Thread(new Runnable() {
@Override
public void run() {
try {
timeWindow.doCheck();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}).start();
while (true){
//TODO 判断限流标记
timeWindow.counter++;
Thread.sleep(new Random().nextInt(15));
}
}
private void doCheck() throws InterruptedException {
while (true) {
slots.addLast(counter);
if (slots.size() > 10) {
slots.removeFirst();
}
//比较最后一个和第一个,两者相差100以上就限流
if ((slots.peekLast() - slots.peekFirst()) > 100) {
System.out.println("限流了。。");
//TODO 修改限流标记为true
}else {
//TODO 修改限流标记为false
}
Thread.sleep(100);
}
}
}
漏桶算法
漏桶算法,又称leaky bucket。
首先,我们有一个固定容量的桶,有水流进来,也有水流出去。对于流进来的水来说,我们无法预计一共有多少水会流进来,也无法预计水流的速度。但是对于流出去的水来说,这个桶可以固定水流出的速率。而且,当桶满了之后,多余的水将会溢出。
我们将算法中的水换成实际应用中的请求,我们可以看到漏桶算法天生就限制了请求的速度。当使用了漏桶算法,我们可以保证接口会以一个常速速率来处理请求。所以漏桶算法天生不会出现临界问题。
缺点:因为漏桶算法的处理速度是平滑的,所以无法应对突发流量。
具体的伪代码如下:
/**
* 漏桶限流算法
*/
public class LeakyBucket {
public long timeStamp = System.currentTimeMillis(); // 当前时间
public long capacity; // 桶的容量
public long rate; // 水漏出的速度(每秒系统能处理的请求数)
public long water; // 当前水量(当前累积请求数)
public boolean limit() {
long now = System.currentTimeMillis();
water = Math.max(0, water - ((now - timeStamp)/1000) * rate); // 先执行漏水,计算剩余水量
timeStamp = now;
if ((water + 1) < capacity) {
// 尝试加水,并且水还未满
water += 1;
return true;
} else {
// 水满,拒绝加水
return false;
}
}
}
令牌桶算法
令牌桶算法,又称token bucket。同样为了理解该算法,我们来看一下该算法的示意图:
从图中我们可以看到,令牌桶算法比漏桶算法稍显复杂。首先,我们有一个固定容量的桶,桶里存放着令牌(token)。桶一开始是空的,token以 一个固定的速率r往桶里填充,直到达到桶的容量,多余的令牌将会被丢弃。每当一个请求过来时,就会尝试从桶里移除一个令牌,如果没有令牌的话,请求无法通过。
具体的伪代码如下:
/**
* 令牌桶限流算法
*/
public class TokenBucket {
public long timeStamp = System.currentTimeMillis(); // 当前时间
public long capacity; // 桶的容量
public long rate; // 令牌放入速度
public long tokens; // 当前令牌数量
public boolean grant() {
long now = System.currentTimeMillis();
// 先添加令牌
tokens = Math.min(capacity, tokens + (now - timeStamp) * rate);
timeStamp = now;
if (tokens < 1) {
// 若不到1个令牌,则拒绝
return false;
} else {
// 还有令牌,领取令牌
tokens -= 1;
return true;
}
}
}