本篇是在《Kafka Stream简单示例(一)》 和《Kafka Stream简单示例(二)---聚合 Aggregation--统计总和》 以及《 Kafka Stream简单示例(三)---自定义Serde》基础上成文的,建议先阅读前三篇,以便清楚上下文关系需求背景。
第三篇 《Kafka Stream简单示例(三)---自定义Serde》中,我们自定义了Statistic类的Serializer和Deserializer。现实中我们可能需要多个类都支持序列化和反序列,能否有泛型的Serializer和Deserializer,直接放入自己的类就可以完成工作?答案是,如果你的类,是POJO类型的,使用泛型JsonPOJOSerializer和JsonPOJODeserializer就可以。
注意:示例中的代码只是展示流程,非生产代码,仅供参考,由此导致的问题本人概不负责。
官方文档在这里,我用是kafka 1.0. 所以连接也是1.0版本的文档。 http://kafka.apache.org/10/documentation/streams/developer-guide/datatypes.html
项目需求
统计一分钟内(固定时间窗口Tumbling Window)内温度的总和与平均值。类似的还有,最大值,最小值。
主要流程和代码
完整的代码在这里,欢迎加星和fork。 谢谢!
一个结果中必须同时含有总和与平均值,于是我们设计一个简单数据结构
@Data
@AllArgsConstructor
@NoArgsConstructor
public class Statistics {
private Long avg;
private Long sum;
private Long count;
}
细心的人会发现本篇中的Statistic比《 Kafka Stream简单示例(三)---自定义Serde》中的Statistic多一个@NoArgsConstructor注解,这是因为我们后面使用反序列化是需要生成Statistics对象(使用默认的无参构造函数生成)。 因此需要添加@NoArgsConstructor注解。
根据Serdes的要求,我们必须提供对应的Serializer和Deserializer。
我们需要实现JsonPOJOSerializer和JsonPOJODeserializer。仍然才考LongSerializer和LongDeserializer的实现, 我们实现了StatisticsSerializer和StatisticsDeserializer。
首先是序列化实现JsonPOJOSerializer
package com.yq.generic;
import com.fasterxml.jackson.databind.ObjectMapper;
import org.apache.kafka.common.serialization.Serializer;
import org.apache.kafka.common.errors.SerializationException;
import java.util.Map;
/**
* 这个是官方例子的copy, 版权归官方。copy到本地是为了让我的例子也运行起来
* https://github.com/apache/kafka/blob/1.0/streams/examples/src/main/java/org/apache/kafka/streams/examples/pageview/JsonPOJOSerializer.java
* className: JsonPOJOSerializer
*
*/
public class JsonPOJOSerializer<T> implements Serializer<T> {
private final ObjectMapper objectMapper = new ObjectMapper();
/**
* Default constructor needed by Kafka
*/
public JsonPOJOSerializer() {
}
@Override
public void configure(Map<String, ?> props, boolean isKey) {
}
@Override
public byte[] serialize(String topic, T data) {
if (data == null)
return null;
try {
return objectMapper.writeValueAsBytes(data);
} catch (Exception e) {
throw new SerializationException("Error serializing JSON message", e);
}
}
@Override
public void close() {
}
}
其次是反序列化实现JsonPOJODeserializer
package com.yq.generic;
import com.fasterxml.jackson.databind.ObjectMapper;
import org.apache.kafka.common.serialization.Deserializer;
import org.apache.kafka.common.errors.SerializationException;
import java.util.Map;
/**
* 这个是官方例子的copy, 版权归官方。copy到本地是为了让我的例子也运行起来
* https://github.com/apache/kafka/blob/1.0/streams/examples/src/main/java/org/apache/kafka/streams/examples/pageview/JsonPOJODeserializer.java
* className: JsonPOJOSerializer
*
*/
public class JsonPOJODeserializer<T> implements Deserializer<T> {
private ObjectMapper objectMapper = new ObjectMapper();
private Class<T> tClass;
/**
* Default constructor needed by Kafka
*/
public JsonPOJODeserializer() {
}
@SuppressWarnings("unchecked")
@Override
public void configure(Map<String, ?> props, boolean isKey) {
tClass = (Class<T>) props.get("JsonPOJOClass");
}
@Override
public T deserialize(String topic, byte[] bytes) {
if (bytes == null)
return null;
T data;
try {
data = objectMapper.readValue(bytes, tClass);
} catch (Exception e) {
throw new SerializationException(e);
}
return data;
}
@Override
public void close() {
}
}
最后是我们的主流程。
第一步,我们需要先定义
final Serializer<Statistics> statisticsSerializer = new JsonPOJOSerializer<>();
serdeProps.put("JsonPOJOClass", Statistics.class);
statisticsSerializer.configure(serdeProps, false);
final Deserializer<Statistics> statisticsDeserializer = new JsonPOJODeserializer<>();
serdeProps.put("JsonPOJOClass", Statistics.class);
statisticsDeserializer.configure(serdeProps, false);
final Serde<Statistics> statisticsSerde = Serdes.serdeFrom(statisticsSerializer, statisticsDeserializer);
第二步。 就像SerDe内置的Serdes.Long()或者 Serdes.String(), 可以直接使用statisticsSerde。
KTable的格式是 KTable<Windowed<String>, Statistics>。 aggregate函数的初始值和返回都是Statistics类型, 结果存储的格式Materialized.<String, Statistics, WindowStore<Bytes, byte[]>>as("time-windowed-aggregated-temp-stream-store")
.withValueSerde(statisticsSerde) , 也是Statistics类型。
package com.yq.generic;
import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.JSONObject;
import com.yq.customized.Statistics;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.common.serialization.Deserializer;
import org.apache.kafka.common.serialization.Serde;
import org.apache.kafka.common.serialization.Serdes;
import org.apache.kafka.common.serialization.Serializer;
import org.apache.kafka.common.utils.Bytes;
import org.apache.kafka.streams.KafkaStreams;
import org.apache.kafka.streams.StreamsBuilder;
import org.apache.kafka.streams.StreamsConfig;
import org.apache.kafka.streams.kstream.Aggregator;
import org.apache.kafka.streams.kstream.Initializer;
import org.apache.kafka.streams.kstream.KStream;
import org.apache.kafka.streams.kstream.KTable;
import org.apache.kafka.streams.kstream.KeyValueMapper;
import org.apache.kafka.streams.kstream.Materialized;
import org.apache.kafka.streams.kstream.Produced;
import org.apache.kafka.streams.kstream.TimeWindows;
import org.apache.kafka.streams.kstream.Windowed;
import org.apache.kafka.streams.kstream.internals.WindowedDeserializer;
import org.apache.kafka.streams.kstream.internals.WindowedSerializer;
import org.apache.kafka.streams.state.WindowStore;
import java.util.HashMap;
import java.util.Map;
import java.util.Properties;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.TimeUnit;
/**
* http://kafka.apache.org/10/documentation/streams/developer-guide/datatypes.html
* 统计60秒内,温度值的最大值 topic中的消息格式为数字,30, 21或者{"temp":19, "humidity": 25}
*/
public class TemperatureAvgGenericSerDeDemo {
private static final int TEMPERATURE_WINDOW_SIZE = 60;
public static void main(String[] args) throws Exception {
Properties props = new Properties();
props.put(StreamsConfig.APPLICATION_ID_CONFIG, "streams-temp-avg");
props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "127.0.0.1:9092");
props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass());
props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass());
props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
props.put(StreamsConfig.CACHE_MAX_BYTES_BUFFERING_CONFIG, 0);
StreamsBuilder builder = new StreamsBuilder();
KStream<String, String> source = builder.stream("iot-temp");
Map<String, Object> serdeProps = new HashMap<>();
final Serializer<Statistics> statisticsSerializer = new JsonPOJOSerializer<>();
serdeProps.put("JsonPOJOClass", Statistics.class);
statisticsSerializer.configure(serdeProps, false);
final Deserializer<Statistics> statisticsDeserializer = new JsonPOJODeserializer<>();
serdeProps.put("JsonPOJOClass", Statistics.class);
statisticsDeserializer.configure(serdeProps, false);
final Serde<Statistics> statisticsSerde = Serdes.serdeFrom(statisticsSerializer, statisticsDeserializer);
KTable<Windowed<String>, Statistics> max = source
.selectKey(new KeyValueMapper<String, String, String>() {
@Override
public String apply(String key, String value) {
return "stat";
}
})
.groupByKey()
.windowedBy(TimeWindows.of(TimeUnit.SECONDS.toMillis(TEMPERATURE_WINDOW_SIZE)))
.aggregate(
new Initializer<Statistics>() {
@Override
public Statistics apply() {
Statistics avgAndSum = new Statistics(0L,0L,0L);
return avgAndSum;
}
},
new Aggregator<String, String, Statistics>() {
@Override
public Statistics apply(String aggKey, String newValue, Statistics aggValue) {
//topic中的消息格式为{"temp":19, "humidity": 25}
System.out.println("aggKey:" + aggKey + ", newValue:" + newValue + ", aggKey:" + aggValue);
Long newValueLong = null;
try {
JSONObject json = JSON.parseObject(newValue);
newValueLong = json.getLong("temp");
}
catch (ClassCastException ex) {
try {
newValueLong = Long.valueOf(newValue);
}
catch (NumberFormatException e) {
System.out.println("Exception:" + e.getMessage());
//异常返回原值
return aggValue;
}
}
catch (Exception e) {
System.out.println("Exception:" + e.getMessage());
//异常返回原值
return aggValue;
}
aggValue.setCount(aggValue.getCount() + 1);
aggValue.setSum(aggValue.getSum() + newValueLong);
aggValue.setAvg(aggValue.getSum() / aggValue.getCount());
return aggValue;
}
},
Materialized.<String, Statistics, WindowStore<Bytes, byte[]>>as("time-windowed-aggregated-temp-stream-store")
.withValueSerde(statisticsSerde)
);
WindowedSerializer<String> windowedSerializer = new WindowedSerializer<>(Serdes.String().serializer());
WindowedDeserializer<String> windowedDeserializer = new WindowedDeserializer<>(Serdes.String().deserializer(), TEMPERATURE_WINDOW_SIZE);
Serde<Windowed<String>> windowedSerde = Serdes.serdeFrom(windowedSerializer, windowedDeserializer);
max.toStream().to("iot-temp-stat", Produced.with(windowedSerde, statisticsSerde));
final KafkaStreams streams = new KafkaStreams(builder.build(), props);
final CountDownLatch latch = new CountDownLatch(1);
Runtime.getRuntime().addShutdownHook(new Thread("streams-temperature-shutdown-hook") {
@Override
public void run() {
streams.close();
latch.countDown();
}
});
try {
streams.start();
latch.await();
} catch (Throwable e) {
System.exit(1);
}
System.exit(0);
}
}
效果截图
图中已经有文字说明,结合代码能更清楚了解Kafka Stream。