大数据告诉你:如何求职数据产品经理?

大数据这么火,想做数据PM?那数据PM如何求职?哪些公司爱招数据PM? 什么样的数据PM符合企业期望?数据PM待遇如何?……凡事预则立,不预则废,本篇先带你了解了解行情。(其实就是爬了拉勾的数据做了个分析,分析过程若有不周之处,还望指正。)

一、数据来源

拉勾网20170519根据“数据产品经理”关键字可以搜索到的职位。由于拉勾只展示符合搜索条件的前450个职位,为了获得更多的数据,设定不同的筛选条件分别爬取汇总,然后清洗了下,最后只剩下456个职位,296家公司。

二、分析部分

分析要点:

什么样的公司爱招数据产品经理(数据PM需求现状)

什么样的求职者更符合企业期望 (企业对数据PM要求)

什么样的企业最壕(数据PM待遇)

1、什么样的公司爱招数据产品经理(数据PM需求现状)

(1)行业

从行业上来看,移动互联网包揽了半壁江山,其次是数据服务,电子商务,金融和O2O。

但是,除了数据服务外,其余几个皆是近几年很火行业,这些行业公司数量本身偏多,不排除有这方面因素的影响。

此外,行业并没有明显表现出对不同经验人才需求的差异性,最喜欢3至五年,其实是1-3年和5-10年,1年以下和10年以上的凤毛菱角。(多个行业标签的公司重复计算)

(2)发展阶段

未融资和天使轮需求量远远小于其他类型,上市公司需求量远远高于其他类型。公司上市了,有一定的规模和资金实力,数据方面开始投入和重视起来。而成立不久的小公司,很多公司这个阶段产品方向还没确定下来,业务和产品先走通更为重要,而且数据系统的建设还是很花钱的。

听起来好像很有道理,不过以上分析没有考虑到不同阶段的公司数量,请大家酌情参考,像未融资的公司不一定是不爱招数据PM,而是很可能这种类型的公司本来就不多,从而造成整体职位偏少。

但是奇怪的是, A、B、C、D轮并没有很多差异。考虑到各阶段公司数量不同的影响,还是不往下分析了,因为很可能是错的。

从人才层次看,上市公司、不需要融资、未融资和天使轮公司对5至10年经验人才的需求占比明显高于其他。未融资和天使轮的样本量很小,暂且不看。上市公司和不需要融资的公司的确是很喜欢大咖级人才。

(3)城市

剔除职位数量在5以下的城市,只剩下图上几个城市。

不管是公司还是职位,北京遥遥领先。职位数量是232,占了职位总数的一半,职位数量这么多,除了北京互联网企业多的原因外,我们我看看到北京的平均招聘人数也是远远领先其他城市的,看来相对于其他城市,北京的公司更爱招数据PM。

上海几乎和深圳持平,杭州领超广州,远远甩开其他二线,紧追上海深圳,本来想探寻上海职位偏少的原因,按照我的理解,上海虽然少于北京,但是还是该超深圳些,我去看了下上海公司的行业和发展阶段分布,奈于爬取数据量偏小,没找到原因。我大胆猜测下,很可能是因为上海的初创型公司偏多,而这类公司对数据pm需求偏小些。

下图是每个城市对不同经验数据PM的需求占比,差异性不大。不管是哪个城市,工作年限要求并没有太大的不同。都是3至5年经验的人才需求量最大,其次是1至3年和5至10年。

不过,经验不限的这块,杭州明显高于其他城市,特别是深圳和广州,从这个角度,不知道可以解读为杭州对于人才的包容性更高些?

2、什么样的求职者更符合企业期望 (企业对数据PM要求)

(1)学历

本科占比90%左右,专科不到6%。这张图告诉我们:本科学历算是个门槛,相对于其他类型的PM,数据PM对逻辑能力要求更高些,专科学历在数据PM这块很艰难。不过还好,硕士要求占比不高,作为一个本科生,我舒了一口气。

此外,不同行业不同发展阶段的公司对学历的要求并没有表现出差异性,图表就不放出来了。

(2)工作经验

正如上文提到:3至5年经验的人才需求量最大,其次是1至3年和5至10年。然后不管工作经验多少,学历上要求还是一样的:本科大多数,专科很艰难。

(3)技能要求

对职位的详情说明做了词云,本来还是分了3年以下和3年以上,不过出来的东西并没有太大差别,3年以上的“管理”,“总监”出现的更高频些,这里也不放出来了。词云反应了各家公司对于数据PM的职责和能力要求:

总结招聘数据PM的主要要求:数据分析、逻辑思维、数学、统计学、BI、报表、画像、指标、数据模型、算法、数据仓库、SQL、spark、python、spass、excel、机器学习、数据挖掘、推荐、商业化。

3、 什么样的企业最壕(数据PM待遇)

(1)整体概况

薪资取最高值和最低值的平均数,1年以下及10年以上由于样本太少,暂不分析。随着工作经验的增加,薪资也是上升趋势,其中1至3年经验,多数公司愿意给10k至20k。25k以上的职位虽然少但是还是存在的,如果实力真的强,公司还是愿意花钱的。一旦超过3年,绝大多数都是15k+,一半在20k以上。而5年以后,25k+占到一半。

(2)学历

后面的分析对工作经验做了区分,分为经验小于3年和经验大于3年,经验不限职位不计入分析。硕士职位过少,暂且不看。对于工作经验不足3年的职位,如下图所示,本科以上学历出现20至25k的待遇,甚至25k+,而大专学历20k以上为0,即使存在专科样本偏少的原因,但也足以说明本科学历有一定优势。

再来看看经验超过3年的职位,如下图所示,这时候,学历好像就没有那么重要,高薪占比差不了多少。

(3)城市

3年以下经验,不管是一线还是二线,北京待遇远超其他城市,杭州在二线城市中也很不错,如下图所示。

3年以上经验,北京上海持平,广州成都差些,而杭州比深圳还要好一些。想想北上深的房价,杭州的表现非常不错。

(4)发展阶段

天使轮数量太少暂不分析。

不管是经验多少,D轮以上和上市公司待遇领先。而D轮以上待遇甚至好于上市公司,猜测一下:D轮以上的公司多数已经发展的比较生熟,离上市还差最后一步,这时候,公司是不是对于人才更舍得花钱?

(5)行业

如图,整体来看,O2O待遇稍好一些。3年经验以上,行业待遇差别不大,3年经验以下,电商待遇偏低,但不排除样本偏少造成的误差。

三、总结

1、上市公司、北京、移动互联网行业最爱招数据PM。

2、百分之九十都要求本科学历,数据分析必须精通。

3、北京待遇最好,杭州性价比高,D轮以上公司最舍得。

本来还想分析下各家hr的活跃时间,处理用时,处理率等问题,样本太少,想想还是算了。

欢迎交流指正,如果感觉还不错,点个赞呗!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容