- 这个编辑器不支持直接插入整块的代码,使用起来稍微有些不方便。
由于线程支持移动的特性,那么就可以构建一系列线程并放到一个容器中(该容器需要是移动感知的,更新后的std::vector便是移动感知),进行自动管理。
可移动(movable)而非可复制的(copyable)可以将对象的所有权进行转移,比如ifstream、unique_ptr、thread都是这样的资源类型
#include "ThreadGroup.h"
#include <algorithm>
using namespace std;
void NormalDoWork(unsigned id)
{
cout << "print number :" << id << " Thread Number:" << this_thread::get_id() << endl;
}
void CThreadGroup::doWork(unsigned id)
{
//lock_guard<mutex> guard(dataMutex);
cout << "print number :" << id << " Thread Number:" << this_thread::get_id() << endl;
}
void CThreadGroup::runThreadGroup()
{
size_t length = 10;
for (size_t i = 0; i < length; i++)
{
threadGroup.push_back(thread(&CThreadGroup::doWork, this, i));
//threadGroup.push_back(thread(doWork, i)); // 如果doWork是个static函数,也可以这样使用
//threadGroup.push_back(thread(NormalDoWork, i));
}
for_each(threadGroup.begin(), threadGroup.end(), mem_fn(&thread::join));
}
书上还有稍微复杂一些的例子,可以实现对容器进行分组后多线程并行计算。
#include <iostream> // std::cout
#include <functional> // std::minus
#include <numeric> // std::accumulate
#include <iterator> // std::distance
#include <thread>
#include <vector>
#include <algorithm>
template<typename Iterator, typename T>
struct accumulate_block
{
void operator()(Iterator first, Iterator last, T& result)
{
result = std::accumulate(first, last, result);
}
};
template<typename Iterator, typename T>
T parallel_accumulate(Iterator first, Iterator last, T init)
{
unsigned long const length = std::distance(first, last);
if (!length)
{
return init;
}
unsigned long const min_per_thread = 25;
unsigned long const max_threads = (length + min_per_thread - 1) / min_per_thread;
unsigned long const hardware_threads = std::thread::hardware_concurrency();
unsigned long const num_threads = std::min(hardware_threads != 0 ? hardware_threads : 2, max_threads);
unsigned long const block_size = length / num_threads;
std::vector<T> results(num_threads);
std::vector<std::thread> threads(num_threads - 1);
Iterator block_start = first;
for (unsigned long i = 0; i < num_threads - 1; ++i)
{
Iterator block_end = block_start;
std::advance(block_end, block_size);
threads[i] = std::thread(accumulate_block<Iterator, T>(), block_start, block_end, std::ref(results[i]));
block_start = block_end;
}
accumulate_block<Iterator, T>()(block_start, last, results[num_threads - 1]);
std::for_each(threads.begin(), threads.end(), std::mem_fn(&std::thread::join));
return std::accumulate(results.begin(), results.end(), init);
}
void testParallelAccumulate()
{
int array_data[] = {1, 2, 3, 4, 5, 6, 7, 8, 9};
std::vector<int> datas(array_data, array_data + sizeof(array_data) / sizeof(int));
int result = 0;
std::cout << "Results is: " <<
parallel_accumulate<std::vector<int>::iterator, int>(datas.begin(), datas.end(), result) << std::endl;
}