1 configuration api
Hadoop 组件的配置使用 XML 形式的配置文件,并且可以使用 ${变量名}
的形式来使用其他属性的值,例如:
<?xml version="1.0"?>
<configuration>
<property>
<name>color</name>
<value>yellow</value>
<description>Color</description>
</property>
<property>
<name>size</name>
<value>10</value>
<description>Size</description>
</property>
<property>
<name>weight</name>
<value>heavy</value>
<final>true</final>
<description>Weight</description>
</property>
<property>
<name>size-weight</name>
<value>${size},${weight}</value>
<description>Size and weight</description>
</property>
</configuration>
这样可以使用 Configuration 类来读取数据:
Configuration conf = new Configuration();
conf.addResource("configuration-1.xml");
assertThat(conf.get("color"), is("yellow"));
assertThat(conf.getInt("size", 0), is(10));
assertThat(conf.get("breadth", "wide"), is("wide"));
也可以添加多个配置文件:
Configuration conf = new Configuration();
conf.addResource("configuration-1.xml");
conf.addResource("configuration-2.xml");
2 开发环境的搭建
hadoop 的 IO 可以使用多种文件系统,所以可以允许在开发环境、本地环境以及集群环境。开发环境下可以使用 Maven 方便获取相关的库:
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<hadoop.version>2.5.1</hadoop.version>
</properties>
<dependencies>
<!-- Hadoop main client artifact -->
<dependency>
<groupId>org.apache.hadoop</groupId>
<version>${hadoop.version}</version>
</dependency>
<!-- Unit test artifacts -->
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.11</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.apache.mrunit</groupId>
<artifactId>mrunit</artifactId>
<version>1.1.0</version>
<classifier>hadoop2</classifier>
<scope>test</scope>
</dependency>
<!-- Hadoop test artifact for running mini clusters -->
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-minicluster</artifactId>
<version>${hadoop.version}</version>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<finalName>hadoop-examples</finalName>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.1</version>
<configuration>
<source>1.6</source>
<target>1.6</target>
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-jar-plugin</artifactId>
<version>2.5</version>
<configuration>
<outputDirectory>${basedir}</outputDirectory>
</configuration>
</plugin>
</plugins>
</build>
为了切换开发、本地和集群环境,我们来创建三个配置文件:
(1)使用本地文件系统的开发环境:
<?xml version="1.0"?>
<configuration>
<property>
<name>fs.defaultFS</name>
<value>file:///</value>
</property>
<property>
<name>mapreduce.framework.name</name>
<value>local</value>
</property>
</configuration>
(2)本地伪单机:
<?xml version="1.0"?>
<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://localhost:9000/</value>
</property>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
<property>
<name>yarn.resourcemanager.address</name>
<value>localhost:8032</value>
</property>
</configuration>
(3) 集群:
<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://namenode/</value>
</property>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
<property>
<name>yarn.resourcemanager.address</name>
<value>resourcemanager:8032</value>
</property>
</configuration>
这样,就可以使用 -conf 选项选择使用的配置文件了:
hadoop fs -conf conf/hadoop-localhost.xml -ls .
如果没有 -conf,则会读取 HADOOP_HOME 下的文件夹 etc/hadoop 下的配置文件。
另外一种方式是将 $HADOOP_HOME/etc/hadoop 下的文件拷贝到其他文件夹,然后设置 HADOOP_CONF_DIR
来切换环境。
3 使用 mrunit 开发单元测试
在 test 目录下生成测试类,先来测试一个不应该输出任何结果的,这里 MapperDriver 类不带任何withOutput,就是指没有输出,有几个输出就对应几个withOutput:
import java.io.IOException;
import java.util.Arrays;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mrunit.mapreduce.MapDriver;
import org.apache.hadoop.mrunit.mapreduce.ReduceDriver;
import org.junit.Test;
public class MaxTemperatureMapperTest {
@Test
public void ignoresMissingTemperatureRecord() throws IOException, InterruptedException {
Text value = new Text("0043011990999991950051518004+68750+023550FM-12+0382" + // Year
"99999V0203201N00261220001CN9999999N9+99991+99999999999"); // Temperature
// 没有 withOutput 所以该测试要通过必须没有输出
new MapDriver<LongWritable, Text, Text, IntWritable>()
.withMapper(new v2.MaxTemperatureMapper())
.withInput(new LongWritable(0), value)
.runTest();
}
}
然后加上一个 reducer 的测试:
@Test
@Test
public void returnsMaximumIntegerInValues() throws IOException, InterruptedException {
new ReduceDriver<Text, IntWritable, Text, IntWritable>().withReducer(
new v2.MaxTemperatureReducer())
.withInput(new Text("1950"),
Arrays.asList(new IntWritable(10), new IntWritable(5)))
.withOutput(new Text("1950"), new IntWritable(10))
.runTest();
}
给 1950 年输入 10 和 5,应该输出 1950 10 这样的结果(mapper 和 reducer 就是前面计算天气的)。
通过测试后,我们就可以在本地的小数据集上运行程序测试了,这样比较好 debug。这里我们继承了 Configured 类,实现了 Tool 接口,并使用 ToolRunner 运行:
public class MaxTemperatureDriver extends Configured implements Tool {
@Override
public int run(String[] args) throws Exception {
if (args.length != 2) {
System.err.printf("Usage: %s [generic options] <input> <output>\n",
getClass().getSimpleName());
ToolRunner.printGenericCommandUsage(System.err);
return -1;
}
Job job = Job.getInstance(getConf(), "Max temperature");
job.setJarByClass(getClass());
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.setMapperClass(MaxTemperatureMapper.class);
job.setCombinerClass(MaxTemperatureReducer.class);
job.setReducerClass(MaxTemperatureReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
return job.waitForCompletion(true) ? 0 : 1;
}
public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new MaxTemperatureDriver(), args);
System.exit(exitCode);
}
}
这里 ToolRunner 主要根据命令行参数解析出 Configuration,Configured 使该类可以 getConf 和 setConf,Tool 主要是提供了 run 方法。下面的代码是 ToolRunner 调用 GenericOptionsParser 来解析配置文件:
public static int run(Configuration conf, Tool tool, String[] args)
throws Exception{
if(conf == null) {
conf = new Configuration();
}
GenericOptionsParser parser = new GenericOptionsParser(conf, args);
//set the configuration back, so that Tool can configure itself
tool.setConf(conf);
//get the args w/o generic hadoop args
String[] toolArgs = parser.getRemainingArgs();
return tool.run(toolArgs);
}
然后就来执行了:
% mvn compile
% export HADOOP_CLASSPATH=target/classes/
% hadoop v2.MaxTemperatureDriver -conf conf/hadoop-local.xml \
input/ncdc/micro output
或不指定配置文件,使用 -fs 指定文件系统, -jt 指定 yarn执行:
//local 指使用本地开发环境
hadoop v2.MaxTemperatureDriver -fs file:/// -jt local input/ncdc/micro output
测试
@Test
public void test() throws Exception {
Configuration conf = new Configuration();
conf.set("fs.defaultFS", "file:///");
conf.set("mapreduce.framework.name", "local");
conf.setInt("mapreduce.task.io.sort.mb", 1);
Path input = new Path("input/sample");
Path output = new Path("output");
FileSystem fs = FileSystem.getLocal(conf);
fs.delete(output, true); // delete old output
MaxTemperatureDriver driver = new MaxTemperatureDriver();
driver.setConf(conf);
int exitCode = driver.run(new String[] {input.toString(), output.toString()});
assertThat(exitCode, is(0));
//一行一行检查输出是否正确
checkOutput(conf, output);
}
4 在集群上运行 hadoop
通过了测试,得到了正确的结果之后,就要真刀真枪的在集群上运行程序了。要在集群上运行,必须先打成一个 jar 包,上面的 pom 文件中使用 maven-jar-plugin 来进行打包,使用 maven 命令 mvn package -DskipTests
即可。如果不在 manifest 中 指定 main class 的话,记得运行时在命令行中要指定主类。为了方便,可以像 war 包一样,把依赖的 jar 全部打包到 运行 jar 包的 lib 目录下,把配置文件打包到运行 jar 包的 classes 目录下,这些用 maven 插件都很简单。
用户的 classpath 由下面三部分组成:
- job JAR;
- job JAR 下面的 lib 目录和 classes 目录;
- 环境变量 HADOOP_CLASSPATH 指定的目录。
在集群中,有所变化,HADOOP_CLASSPATH 不再生效,因为它仅仅对 driver 运行的 JVM 有效。:
- job JAR;
- job JAR 下面的 lib 目录和 classes 目录;
- 任何使用命令行参数 -libjars 加入分布式缓存的文件
所以运行时有三种方式:
- 把 jar 包解压缩然后打包进运行的 jar 中;
- 把 jar 包打包进 运行 jar 包的 lib 目录下;
- 使用 HADOOP_CLASSPATH 将依赖加入 client 的 classpath 中,然后用 -libjars 命令将其加入分布式缓存中。
在用户侧,可以设置环境变量 HADOOP_USER_CLASSPATH_FIRST 来让用户选择的库被优先使用;在集群中,可以设置 mapreduce.job.user.classpath.first 为 true 来让用户的库被优先使用。
运行下面的命令可以提交一个任务到 hadoop 集群运行:
hadoop jar hadoop-examples.jar v2.MaxTemperatureDriver -fs hdfs://192.168.0.133:9000 -jt 192.168.0.133:8032 file:///home/hadoop/input max-temp
由于 input 是本地文件,所以加上了 file:/// 前缀。
最终输出:
File System Counters
FILE: Number of bytes read=46341975
FILE: Number of bytes written=317163
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=176
HDFS: Number of bytes written=27
HDFS: Number of read operations=7
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Launched map tasks=2
Launched reduce tasks=1
Data-local map tasks=2
Total time spent by all maps in occupied slots (ms)=27621
Total time spent by all reduces in occupied slots (ms)=13410
Total time spent by all map tasks (ms)=27621
Total time spent by all reduce tasks (ms)=13410
Total vcore-seconds taken by all map tasks=27621
Total vcore-seconds taken by all reduce tasks=13410
Total megabyte-seconds taken by all map tasks=28283904
Total megabyte-seconds taken by all reduce tasks=13731840
Map-Reduce Framework
Map input records=211054
Map output records=208834
Map output bytes=1879506
Map output materialized bytes=56
Input split bytes=176
Combine input records=208834
Combine output records=4
Reduce input groups=3
Reduce shuffle bytes=56
Reduce input records=4
Reduce output records=3
Spilled Records=8
Shuffled Maps =2
Failed Shuffles=0
Merged Map outputs=2
GC time elapsed (ms)=456
CPU time spent (ms)=8530
Physical memory (bytes) snapshot=660267008
Virtual memory (bytes) snapshot=5742837760
Total committed heap usage (bytes)=464519168
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=46341925
File Output Format Counters
Bytes Written=27