图像数据分析之五

图像的文本标注

import cv2 as cv 
img = cv.imread('images\lena.jpg',cv.IMREAD_GRAYSCALE) 
cv.namedWindow('Hello,Lena', cv.WINDOW_AUTOSIZE)
w,h=img.shape 
x = w // 3 # y position of the text
y = h // 3 # x position of the text 
cv.putText(img,'Hello,Lena!',(x,y),cv.FONT_HERSHEY_SIMPLEX,0.8,(255,0,0),1)
cv.imshow('Lean',img) #Show the image 
cv.waitKey(0)
cv.destroyAllWindows()

图像缩放

import cv2 as cv 
import matplotlib.pyplot as plt
img = cv.imread('images\lena.jpg',cv.COLOR_BGR2GRAY) 
width,height,channel = img.shape
b,g,r = cv.split(img)
src = cv.merge([r, g, b])
res = cv.resize(src,(2*width,2*height),interpolation = cv.INTER_CUBIC)
plt.subplot(121)
plt.imshow(src)
plt.axis('off')
plt.subplot(122)
plt.imshow(res)
plt.axis('off')
cv.waitKey(0)
cv.destroyAllWindows()

图像旋转


img = cv.imread('images\lena.jpg',cv.IMREAD_COLOR)
rows,cols,ch = img.shape
b,g,r = cv.split(img)
src = cv.merge([r, g, b]) 
M = cv.getRotationMatrix2D((cols/2,rows/2),45,1)
dst = cv.warpAffine(src,M,(cols,rows))
plt.subplot(121)
plt.imshow(src)
plt.axis('off')
plt.subplot(122)
plt.imshow(dst)
plt.axis('off')

图像的仿射变换
仿射变换,又称仿射映射,是指在几何中,一个向量空间进行一次线性变换并接上一个平移,变换为另一个向量空间。
设图像为x,放缩或旋转变换为A,平移为b,那么变换后的图像为
y = A*x+b

import numpy as np
img = cv.imread('images\lena.jpg',cv.COLOR_BGR2GRAY) 
rows,cols,ch = img.shape
b,g,r = cv.split(img)
img = cv.merge([r, g, b])
pts1 = np.float32([[50,50],[200,50],[50,200]])
pts2 = np.float32([[10,100],[200,50],[100,250]])
M = cv.getAffineTransform(pts1,pts2)
dst = cv.warpAffine(img,M,(cols,rows))
plt.subplot(121)
plt.imshow(img)
plt.title('Input')
plt.axis('off')
plt.subplot(122)
plt.imshow(dst)
plt.title('Output')
# plt.show()
plt.axis('off')

图像的阈值分割

src = cv.imread('images\lena.jpg',cv.COLOR_BGR2GRAY)  
gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
cv.imshow('input',gray)
h, w = gray.shape[:2]
m = np.reshape(gray, [1, w*h])#化为一维数组
mean = m.sum() / (w*h)
print("mean: ", mean)
ret, binary = cv.threshold(gray, mean, 255, cv.THRESH_BINARY)
cv.imshow('Binary',binary)
cv.waitKey(0)
cv.destroyAllWindows()

图像的SIFT特征提取

传统图像处理中图像特征匹配有三个基本步骤:

  • 特征提取
  • 特征描述
  • 特征匹配
  • 特征提取就是从图像中提取出关键点(或特征点、角点)等。
  • 特征描述就是用一组数学向量对特征点进行描述,其主要保证不同的向量和不同的特征点之间是一种对应的关系,同时相似的关键点之间的差异尽可能小。
  • 特征匹配其实就是特征向量之间的距离计算,常用的距离有欧氏距离、汉明距离、余弦距离等。

SIFT算法又叫尺度不变特征变换匹配算法, SIFT特征对于旋转和尺度均具有不变性,并且对于噪声、视角变化和光照变化具有良好的鲁棒性,所以我们今天来学习一下SIFT算法。

import cv2 as cv
from matplotlib import pyplot as plt
import numpy as np
img = cv.imread('images\lena.jpg',cv.IMREAD_COLOR)
cv.imshow('Lean',img)
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
sift = cv.xfeatures2d.SIFT_create() 
kp = sift.detect(gray, None)# 找出关键点
ret = cv.drawKeypoints(gray, kp, img) 
cv.imshow('SIFTKeyPint', ret)
cv.waitKey(0)
cv.destroyAllWindows()
kp, des = sift.compute(gray, kp) # 使用关键点找出sift特征向量 
print('特征点个数:',np.shape(kp)) 
print('特征向量维度:\n',np.shape(des))
print('第一个关键点特征:\n',des[0])

图像的SURF特征提取

import cv2 as cv
import numpy as np 
 
img = cv.imread('images\lena_color_512.tif',cv.IMREAD_COLOR)
cv.imshow('Lean',img) 
#参数为hessian矩阵的阈值
surf = cv.xfeatures2d.SURF_create(500) 
#设置是否要检测方向
surf.setUpright(True) 
#输出设置值
print(surf.getUpright()) 
#找到关键点和描述符
key_query,desc_query = surf.detectAndCompute(img,None) 
img=cv.drawKeypoints(img,key_query,img) 
#输出描述符的个数
print(surf.descriptorSize()) 
cv.imshow('SURF',img)
cv.waitKey(0)

图像的去噪

import cv2 as cv
import numpy as np 

img = cv.imread('images\lena.jpg',cv.IMREAD_COLOR)
cv.imshow('Lean',img) 

Z = img.reshape((-1, 3))
np.random.seed(59)
noise = np.random.random(Z.shape) < 0.99
noisy = (Z * noise).reshape((img.shape))

cv.imshow('noise Lena',noisy)
cleaned = cv.fastNlMeansDenoisingColored(noisy, None, 10, 7, 7, 21)
cv.imshow('Denoised Lena',cleaned)
cv.waitKey()
cv.destroyAllWindows()
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,980评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,178评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,868评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,498评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,492评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,521评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,910评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,569评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,793评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,559评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,639评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,342评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,931评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,904评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,144评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,833评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,350评论 2 342

推荐阅读更多精彩内容