0.0 R包
顾名思义,应该是一个装着什么东西的包裹,包括
代码(不仅仅 是 R 代码!),包及内部函数相关的文档,一些以检查一切是否正常工作的测试(some tests to check everything works as it should),以及数据集。
R 包初学者指南
1. 使用dplyr包的准备工作
添加镜像并下载
options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/"))
options(BioC_mirror="https://mirrors.ustc.edu.cn/bioc/")
以上代码添加镜像,CRAN列对应清华镜像,BioC_mirror对应中科大镜像
install.packages("dplyr")
以上代码对应安装dplyr
library()
require()
以上代码对应加载 R包
2. dplyr五个基础函数
全部以简化版iris作为数据集进行实验操作
n <- iris[c(1:2,51:52,101:102),]
指n保留了iris的1、2、51、52、101、102行
x #iris
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
7 4.6 3.4 1.4 0.3 setosa
8 5.0 3.4 1.5 0.2 setosa
9 4.4 2.9 1.4 0.2 setosa
10 4.9 3.1 1.5 0.1 setosa
11 5.4 3.7 1.5 0.2 setosa
12 4.8 3.4 1.6 0.2 setosa
13 4.8 3.0 1.4 0.1 setosa
14 4.3 3.0 1.1 0.1 setosa
15 5.8 4.0 1.2 0.2 setosa
16 5.7 4.4 1.5 0.4 setosa
17 5.4 3.9 1.3 0.4 setosa
18 5.1 3.5 1.4 0.3 setosa
19 5.7 3.8 1.7 0.3 setosa
20 5.1 3.8 1.5 0.3 setosa
21 5.4 3.4 1.7 0.2 setosa
22 5.1 3.7 1.5 0.4 setosa
23 4.6 3.6 1.0 0.2 setosa
24 5.1 3.3 1.7 0.5 setosa
25 4.8 3.4 1.9 0.2 setosa
26 5.0 3.0 1.6 0.2 setosa
27 5.0 3.4 1.6 0.4 setosa
28 5.2 3.5 1.5 0.2 setosa
29 5.2 3.4 1.4 0.2 setosa
30 4.7 3.2 1.6 0.2 setosa
31 4.8 3.1 1.6 0.2 setosa
32 5.4 3.4 1.5 0.4 setosa
33 5.2 4.1 1.5 0.1 setosa
34 5.5 4.2 1.4 0.2 setosa
35 4.9 3.1 1.5 0.2 setosa
36 5.0 3.2 1.2 0.2 setosa
37 5.5 3.5 1.3 0.2 setosa
38 4.9 3.6 1.4 0.1 setosa
39 4.4 3.0 1.3 0.2 setosa
40 5.1 3.4 1.5 0.2 setosa
41 5.0 3.5 1.3 0.3 setosa
42 4.5 2.3 1.3 0.3 setosa
43 4.4 3.2 1.3 0.2 setosa
44 5.0 3.5 1.6 0.6 setosa
45 5.1 3.8 1.9 0.4 setosa
46 4.8 3.0 1.4 0.3 setosa
47 5.1 3.8 1.6 0.2 setosa
48 4.6 3.2 1.4 0.2 setosa
49 5.3 3.7 1.5 0.2 setosa
50 5.0 3.3 1.4 0.2 setosa
51 7.0 3.2 4.7 1.4 versicolor
52 6.4 3.2 4.5 1.5 versicolor
53 6.9 3.1 4.9 1.5 versicolor
54 5.5 2.3 4.0 1.3 versicolor
55 6.5 2.8 4.6 1.5 versicolor
56 5.7 2.8 4.5 1.3 versicolor
57 6.3 3.3 4.7 1.6 versicolor
58 4.9 2.4 3.3 1.0 versicolor
59 6.6 2.9 4.6 1.3 versicolor
60 5.2 2.7 3.9 1.4 versicolor
61 5.0 2.0 3.5 1.0 versicolor
62 5.9 3.0 4.2 1.5 versicolor
63 6.0 2.2 4.0 1.0 versicolor
64 6.1 2.9 4.7 1.4 versicolor
65 5.6 2.9 3.6 1.3 versicolor
66 6.7 3.1 4.4 1.4 versicolor
67 5.6 3.0 4.5 1.5 versicolor
68 5.8 2.7 4.1 1.0 versicolor
69 6.2 2.2 4.5 1.5 versicolor
70 5.6 2.5 3.9 1.1 versicolor
71 5.9 3.2 4.8 1.8 versicolor
72 6.1 2.8 4.0 1.3 versicolor
73 6.3 2.5 4.9 1.5 versicolor
74 6.1 2.8 4.7 1.2 versicolor
75 6.4 2.9 4.3 1.3 versicolor
76 6.6 3.0 4.4 1.4 versicolor
77 6.8 2.8 4.8 1.4 versicolor
78 6.7 3.0 5.0 1.7 versicolor
79 6.0 2.9 4.5 1.5 versicolor
80 5.7 2.6 3.5 1.0 versicolor
81 5.5 2.4 3.8 1.1 versicolor
82 5.5 2.4 3.7 1.0 versicolor
83 5.8 2.7 3.9 1.2 versicolor
84 6.0 2.7 5.1 1.6 versicolor
85 5.4 3.0 4.5 1.5 versicolor
86 6.0 3.4 4.5 1.6 versicolor
87 6.7 3.1 4.7 1.5 versicolor
88 6.3 2.3 4.4 1.3 versicolor
89 5.6 3.0 4.1 1.3 versicolor
90 5.5 2.5 4.0 1.3 versicolor
91 5.5 2.6 4.4 1.2 versicolor
92 6.1 3.0 4.6 1.4 versicolor
93 5.8 2.6 4.0 1.2 versicolor
94 5.0 2.3 3.3 1.0 versicolor
95 5.6 2.7 4.2 1.3 versicolor
96 5.7 3.0 4.2 1.2 versicolor
97 5.7 2.9 4.2 1.3 versicolor
98 6.2 2.9 4.3 1.3 versicolor
99 5.1 2.5 3.0 1.1 versicolor
100 5.7 2.8 4.1 1.3 versicolor
101 6.3 3.3 6.0 2.5 virginica
102 5.8 2.7 5.1 1.9 virginica
103 7.1 3.0 5.9 2.1 virginica
104 6.3 2.9 5.6 1.8 virginica
105 6.5 3.0 5.8 2.2 virginica
106 7.6 3.0 6.6 2.1 virginica
107 4.9 2.5 4.5 1.7 virginica
108 7.3 2.9 6.3 1.8 virginica
109 6.7 2.5 5.8 1.8 virginica
110 7.2 3.6 6.1 2.5 virginica
111 6.5 3.2 5.1 2.0 virginica
112 6.4 2.7 5.3 1.9 virginica
113 6.8 3.0 5.5 2.1 virginica
114 5.7 2.5 5.0 2.0 virginica
115 5.8 2.8 5.1 2.4 virginica
116 6.4 3.2 5.3 2.3 virginica
117 6.5 3.0 5.5 1.8 virginica
118 7.7 3.8 6.7 2.2 virginica
119 7.7 2.6 6.9 2.3 virginica
120 6.0 2.2 5.0 1.5 virginica
121 6.9 3.2 5.7 2.3 virginica
122 5.6 2.8 4.9 2.0 virginica
123 7.7 2.8 6.7 2.0 virginica
124 6.3 2.7 4.9 1.8 virginica
125 6.7 3.3 5.7 2.1 virginica
126 7.2 3.2 6.0 1.8 virginica
127 6.2 2.8 4.8 1.8 virginica
128 6.1 3.0 4.9 1.8 virginica
129 6.4 2.8 5.6 2.1 virginica
130 7.2 3.0 5.8 1.6 virginica
131 7.4 2.8 6.1 1.9 virginica
132 7.9 3.8 6.4 2.0 virginica
133 6.4 2.8 5.6 2.2 virginica
134 6.3 2.8 5.1 1.5 virginica
135 6.1 2.6 5.6 1.4 virginica
136 7.7 3.0 6.1 2.3 virginica
137 6.3 3.4 5.6 2.4 virginica
138 6.4 3.1 5.5 1.8 virginica
139 6.0 3.0 4.8 1.8 virginica
140 6.9 3.1 5.4 2.1 virginica
141 6.7 3.1 5.6 2.4 virginica
142 6.9 3.1 5.1 2.3 virginica
143 5.8 2.7 5.1 1.9 virginica
144 6.8 3.2 5.9 2.3 virginica
145 6.7 3.3 5.7 2.5 virginica
146 6.7 3.0 5.2 2.3 virginica
147 6.3 2.5 5.0 1.9 virginica
148 6.5 3.0 5.2 2.0 virginica
149 6.2 3.4 5.4 2.3 virginica
150 5.9 3.0 5.1 1.8 virginica
> n #简化后的iris
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
51 7.0 3.2 4.7 1.4 versicolor
52 6.4 3.2 4.5 1.5 versicolor
101 6.3 3.3 6.0 2.5 virginica
102 5.8 2.7 5.1 1.9 virginica
2.1 mutate()——增加行
> mutate(n , newline = 1:6)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species newline
1 5.1 3.5 1.4 0.2 setosa 1
2 4.9 3.0 1.4 0.2 setosa 2
51 7.0 3.2 4.7 1.4 versicolor 3
52 6.4 3.2 4.5 1.5 versicolor 4
101 6.3 3.3 6.0 2.5 virginica 5
102 5.8 2.7 5.1 1.9 virginica 6
> mutate(n , newline(error) = 7:1)
错误: 意外的'=' in "mutate(n , newline(error) ="
> mutate(n , newline(error) = 1:7)
错误: 意外的'=' in "mutate(n , newline(error) ="
> mutate(n , newline(error) = 1:5)
错误: 意外的'=' in "mutate(n , newline(error) ="
几次小尝试后发现,貌似只能加与行数相等数目的数字,或按照教程进行行与行之间的运算,并用text保存了help(mutate)
的相关信息留稍后查看
2.2 select()——按列筛选
> select(test,1)
Error in select(test, 1) : 找不到对象'test'
> select(n,1)
Sepal.Length
1 5.1
2 4.9
51 7.0
52 6.4
101 6.3
102 5.8
> select(n,c(1,5))
Sepal.Length Species
1 5.1 setosa
2 4.9 setosa
51 7.0 versicolor
52 6.4 versicolor
101 6.3 virginica
102 5.8 virginica
> select(n,Sepal.Length)
Sepal.Length
1 5.1
2 4.9
51 7.0
52 6.4
101 6.3
102 5.8
>
> vars <- c("newline", "Petal.Width")
> select(n, one_of(vars))
Petal.Width
1 0.2
2 0.2
51 1.4
52 1.5
101 2.5
102 1.9
Warning message:
Unknown columns: `newline`
> select(test, vars)
Error in select(test, vars) : 找不到对象'test'
> select(n, vars)
Note: Using an external vector in selections is ambiguous.
i Use `all_of(vars)` instead of `vars` to silence this message.
i See <https://tidyselect.r-lib.org/reference/faq-external-vector.html>.
This message is displayed once per session.
错误: Can't subset columns that don't exist.
x Column `newline` doesn't exist.
Run `rlang::last_error()` to see where the error occurred.
> select(n, all_of(vars))
错误: Can't subset columns that don't exist.
x Column `newline` doesn't exist.
Run `rlang::last_error()` to see where the error occurred.
> View(n)
> rlang::last_error()
<error/vctrs_error_subscript_oob>
Can't subset columns that don't exist.
x Column `newline` doesn't exist.
Backtrace:
1. dplyr::select(n, all_of(vars))
2. dplyr:::select.data.frame(n, all_of(vars))
3. tidyselect::eval_select(expr(c(...)), .data)
4. tidyselect:::eval_select_impl(...)
12. tidyselect:::vars_select_eval(...)
13. tidyselect:::walk_data_tree(expr, data_mask, context_mask)
14. tidyselect:::eval_c(expr, data_mask, context_mask)
15. tidyselect:::reduce_sels(node, data_mask, context_mask, init = init)
16. tidyselect:::walk_data_tree(new, data_mask, context_mask)
17. tidyselect:::as_indices_sel_impl(...)
18. tidyselect:::as_indices_impl(x, vars, strict = strict)
19. tidyselect:::chr_as_locations(x, vars)
20. vctrs::vec_as_location(x, n = length(vars), names = vars)
22. vctrs:::stop_subscript_oob(...)
23. vctrs:::stop_subscript(...)
Run `rlang::last_trace()` to see the full context.
经历了一些小波折,不过可以确认的是select(数据集,第几列/列名/c(列号,列号/含有列名的变量))
同时发现,上一个函数mutate
进行的变化并没有保存到原数据集中
2.3 filter()——筛选行
> filter(n, Species == "newline") #很奇怪,这一行居然没有报错,而是正常显示了有列名的空结果
[1] Sepal.Length Sepal.Width Petal.Length Petal.Width Species
<0 行> (或0-长度的row.names)
> View(n)
> filter(n, Species == "setosa")
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
> filter(n, Species == "setosa"&Sepal.Length > 5 )
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
> filter(n, Species %in% c("setosa","versicolor"))
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 7.0 3.2 4.7 1.4 versicolor
4 6.4 3.2 4.5 1.5 versicolor
2.4 arrange()——排序
> arrange(n, Sepal.Length)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 4.9 3.0 1.4 0.2 setosa
2 5.1 3.5 1.4 0.2 setosa
3 5.8 2.7 5.1 1.9 virginica
4 6.3 3.3 6.0 2.5 virginica
5 6.4 3.2 4.5 1.5 versicolor
6 7.0 3.2 4.7 1.4 versicolor
> arrange(n, desc(Sepal.Length))
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 7.0 3.2 4.7 1.4 versicolor
2 6.4 3.2 4.5 1.5 versicolor
3 6.3 3.3 6.0 2.5 virginica
4 5.8 2.7 5.1 1.9 virginica
5 5.1 3.5 1.4 0.2 setosa
6 4.9 3.0 1.4 0.2 setosa
> arrange(n,species)
错误: arrange() failed at implicit mutate() step.
* Problem with `mutate()` input `..1`.
x 找不到对象'species'
i Input `..1` is `species`.
Run `rlang::last_error()` to see where the error occurred.
有意思的事情发生了,我没有办法用species排序,因此没有实现EXCEL中的按字母顺序排列功能,会不会与数据集文件的结构有关呢,有待探究。
另:双重排序如何实现呢,既然R语言可以对大规模数据简化操作进行分析,应该存在这种操作。
2.5 summarise()——汇总
> summarise(n, mean(Sepal.Length), sd(Sepal.Length))
mean(Sepal.Length) sd(Sepal.Length)
1 5.916667 0.8084965
> group_by(n, Species)
# A tibble: 6 x 5
# Groups: Species [3]
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
<dbl> <dbl> <dbl> <dbl> <fct>
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3 1.4 0.2 setosa
3 7 3.2 4.7 1.4 versicolor
4 6.4 3.2 4.5 1.5 versicolor
5 6.3 3.3 6 2.5 virginica
6 5.8 2.7 5.1 1.9 virginica
> summarise(group_by(n, Species),mean(Sepal.Length), sd(Sepal.Length))
# A tibble: 3 x 3
Species `mean(Sepal.Length)` `sd(Sepal.Length)`
<fct> <dbl> <dbl>
1 setosa 5 0.141
2 versicolor 6.7 0.424
3 virginica 6.05 0.354
通过summarise
和group_by
一同实现了计算平均数mean
计算标准差sd
和根据某一列值分组计算对应组标准差的功能,很是方便!
管道函数
%>%来自dplyr包的管道函数,其作用是将前一步的结果直接传参给下一步的函数,从而省略了中间的赋值步骤,可以大量减少内存中的对象,节省内存
符号%>%,这是管道操作,其意思是将%>%左边的对象传递给右边的函数,作为第一个选项的设置(或剩下唯一一个选项的设置)
管道函数很简单
> n %>%
+ group_by(Species) %>%
+ summarise(mean(Sepal.Length), sd(Sepal.Length))
# A tibble: 3 x 3
Species `mean(Sepal.Length)` `sd(Sepal.Length)`
<fct> <dbl> <dbl>
1 setosa 5 0.141
2 versicolor 6.7 0.424
3 virginica 6.05 0.354
count统计某列的unique值
> count(n,Species)
Species n
1 setosa 2
2 versicolor 2
3 virginica 2
dplyr处理关系数据
inner_join(test1, test2, by = "x") # 内联,将1和2按照x值的对应合并,取交集
left_join(test1, test2, by = 'x') # 将1和2按照1的x值的对应合并
left_join(test2, test1, by = 'x') # 将1和2按照2的x值的对应合并
full_join( test1, test2, by = 'x') # 全连 有对应连对应,没对应空白
semi_join(x = test1, y = test2, by = 'x') # 能够与y表匹配的x表值
anti_join(x = test2, y = test1, by = 'x') # 不能够与y表匹配的x表值
test1 <- data.frame(x = c(1,2,3,4), y = c(10,20,30,40))
test1
## x y
## 1 1 10
## 2 2 20
## 3 3 30
## 4 4 40
test2 <- data.frame(x = c(5,6), y = c(50,60))
test2
## x y
## 1 5 50
## 2 6 60
test3 <- data.frame(z = c(100,200,300,400))
test3
## z
## 1 100
## 2 200
## 3 300
## 4 400
bind_rows(test1, test2)
## x y
## 1 1 10
## 2 2 20
## 3 3 30
## 4 4 40
## 5 5 50
## 6 6 60
bind_cols(test1, test3)
## x y z
## 1 1 10 100
## 2 2 20 200
## 3 3 30 300
## 4 4 40 400
最后这个没太看懂,明天再参透一下!明天加油!