#1 - o.a.s.shuffle.sort.BypassMergeSortShuffleWriter.write()方法
有意思的是,BypassMergeSortShuffleWriter类是用Java写的,而不是Scala。
@Override
public void write(Iterator<Product2<K, V>> records) throws IOException {
assert (partitionWriters == null);
//【如果没有数据】
if (!records.hasNext()) {
//【写一份空的输出】
partitionLengths = new long[numPartitions];
shuffleBlockResolver.writeIndexFileAndCommit(shuffleId, mapId, partitionLengths, null);
mapStatus = MapStatus$.MODULE$.apply(blockManager.shuffleServerId(), partitionLengths);
return;
}
final SerializerInstance serInstance = serializer.newInstance();
final long openStartTime = System.nanoTime();
//【注意会有numPartitions(分区数)个DiskBlockObjectWriter以及FileSegment】
partitionWriters = new DiskBlockObjectWriter[numPartitions];
partitionWriterSegments = new FileSegment[numPartitions];
for (int i = 0; i < numPartitions; i++) {
//【创建临时块。在上一篇文章的代码#5中做了同样的事】
final Tuple2<TempShuffleBlockId, File> tempShuffleBlockIdPlusFile =
blockManager.diskBlockManager().createTempShuffleBlock();
//【获取块ID和对应文件】
final File file = tempShuffleBlockIdPlusFile._2();
final BlockId blockId = tempShuffleBlockIdPlusFile._1();
//【对每个分区都创建一个DiskBlockObjectWriter。fileBufferSize仍然对应spark.shuffle.file.buffer参数】
partitionWriters[i] =
blockManager.getDiskWriter(blockId, file, serInstance, fileBufferSize, writeMetrics);
}
// Creating the file to write to and creating a disk writer both involve interacting with
// the disk, and can take a long time in aggregate when we open many files, so should be
// included in the shuffle write time.
writeMetrics.incWriteTime(System.nanoTime() - openStartTime);
//【如果有数据】
while (records.hasNext()) {
final Product2<K, V> record = records.next();
final K key = record._1();
//【按key对应的分区,分别写入对应的文件】
partitionWriters[partitioner.getPartition(key)].write(key, record._2());
}
for (int i = 0; i < numPartitions; i++) {
final DiskBlockObjectWriter writer = partitionWriters[i];
//【提交写操作,最终获得numPartition个FileSegment】
partitionWriterSegments[i] = writer.commitAndGet();
writer.close();
}
//【创建输出数据文件与临时数据文件】
File output = shuffleBlockResolver.getDataFile(shuffleId, mapId);
File tmp = Utils.tempFileWith(output);
try {
//【#2 - 将上面的许多个分区文件合并到临时文件】
partitionLengths = writePartitionedFile(tmp);
//【创建索引文件。writeIndexFileAndCommit()方法在上一篇文章中的代码段#9有详细解释】
shuffleBlockResolver.writeIndexFileAndCommit(shuffleId, mapId, partitionLengths, tmp);
} finally {
if (tmp.exists() && !tmp.delete()) {
logger.error("Error while deleting temp file {}", tmp.getAbsolutePath());
}
}
//【填充MapStatus结果】
mapStatus = MapStatus$.MODULE$.apply(blockManager.shuffleServerId(), partitionLengths);
}
之前已经讲过触发bypass机制的条件。从代码可见,在bypass机制下,shuffle write的流程大大简化了。中间没有类似PartitionedAppendOnlyMap那样的缓存(因为没有map端预聚合),也没有数据方面的排序,直接按分区写一批中间数据文件(因为分区数会小于阈值spark.shuffle.sort.bypassMergeThreshold
,不会产生过多),然后将它们合并。这种方式实际上颇有一些借鉴hash shuffle的意味。
bypass的含义是“旁路”“支线”,这也符合其绕过了缓存和排序的特征。虽然它中途产生的文件可能会比普通sort shuffle还多,但胜在数据量少,逻辑简单,因此在阈值合适的情况下速度也很快。
下面的方法用于合并文件,同样简单粗暴。
#2 - o.a.s.shuffle.sort.BypassMergeSortShuffleWriter.writePartitionedFile()方法
/**
* Concatenate all of the per-partition files into a single combined file.
*
* @return array of lengths, in bytes, of each partition of the file (used by map output tracker).
*/
private long[] writePartitionedFile(File outputFile) throws IOException {
// Track location of the partition starts in the output file
final long[] lengths = new long[numPartitions];
if (partitionWriters == null) {
// We were passed an empty iterator
return lengths;
}
//【创建合并到临时文件的输出流】
final FileOutputStream out = new FileOutputStream(outputFile, true);
final long writeStartTime = System.nanoTime();
boolean threwException = true;
try {
for (int i = 0; i < numPartitions; i++) {
//【获取FileSegment对应的文件】
final File file = partitionWriterSegments[i].file();
if (file.exists()) {
final FileInputStream in = new FileInputStream(file);
boolean copyThrewException = true;
try {
//【将产生的碎文件复制合并到临时文件中去,并返回长度】
//【transferToEnabled即spark.file.transferTo参数,默认值true,采用NIO zero-copy方式复制;false就采用传统BIO方式】
lengths[i] = Utils.copyStream(in, out, false, transferToEnabled);
copyThrewException = false;
} finally {
Closeables.close(in, copyThrewException);
}
if (!file.delete()) {
logger.error("Unable to delete file for partition {}", i);
}
}
}
threwException = false;
} finally {
Closeables.close(out, threwException);
writeMetrics.incWriteTime(System.nanoTime() - writeStartTime);
}
partitionWriters = null;
//【返回各分区的长度】
return lengths;
}