大数据学习之路之HBASE

Hadoop之HBASE

一、HBASE简介

HBase是一个开源的、分布式的,多版本的,面向列的,半结构化的NoSql数据库,提供高性能的随机读写结构化数据的能力。它可以直接使用本地文件系统,也可以使用Hadoop的HDFS文件存储系统。不过,为了提高数据的可靠性和系统的健壮性,并且发挥HBase处理大数据的能力,使用HDFS作为文件存储系统才更为稳妥。

HBase存储的数据从逻辑上来看就像一张很大的表,并且它的数据列可以根据需要动态地增加。除此之外,每个单元(cell,由行和列所确定的位置)中的数据又可以具有多个版本(通过时间戳来区别)。从下图可以看出,HBase还具有这样的特点:它向下提供了存储,向上提供了运算。另外,在HBase之上还可以使用Hadoop的MapReduce计算模型来并行处理大规模数据,这也是它具有强大性能的核心所在。它将数据存储与并行计算完美地结合在一起。

HBASE关系图.png

HBase 和 HDFS

HDFS HBase
HDFS是适于存储大容量文件的分布式文件系统。 HBase是建立在HDFS之上的数据库。
HDFS不支持快速单独记录查找。 HBase提供在较大的表快速查找。
它提供了高延迟批量处理;没有批处理概念。 它提供了数十亿条记录低延迟访问单个行记录(随机存取)。
它提供的数据只能顺序访问。 HBase内部使用哈希表和提供随机接入,并且其存储索引,可将在HDFS文件中的数据进行快速查找。

二、HBASE表结构

HBASE表具有以下特点:

  • 大:一个表可以有上亿行,上百万列

  • 面向列:面向列(族)的存储和权限控制,列(族)独立检索。

  • 稀疏:对于为空(null)的列,并不占用存储空间,因此,表可以设计的非常稀疏。

HBase以表的形式存储数据。表有行和列组成。列划分为若干个列族(row family)。下面是HBASE表的逻辑视图:

HBASE数据结构.png

在shell客户端展示:

> scan 'member'
ROW                                               COLUMN+CELL                                       lisi                 column=address:, timestamp=1567757931802, value=sichuan                       lisi                 column=info:, timestamp=1567757982455, value=info2 
lisi                 column=info:love, timestamp=1567758039091, value=movie                         lisi                 column=school:, timestamp=1567758005941, value=xinhua                         zhangsan             column=address:city, timestamp=1567755403595, value=beijing                   zhangsan             column=info:, timestamp=1567755827530, value=info1                             zhangsan             column=info:age, timestamp=1567756662127, value=26 
zhangsan             column=info:birthday, timestamp=1567755398376, value=1993-11-20               zhangsan             column=info:country, timestamp=1567755402535, value=china                     zhangsan             column=school:, timestamp=1567757294341, value=shiyan                         2 row(s)
Took 0.0945 seconds

下面依次介绍这些结构:

  • Row key:用来检索记录的主键,类似key-value结构的key。访问hbase table的行,只有三种方式:
    • 通过单个row key访问;
    • 通过row key的range;
    • 全表扫描;
  • 列族:hbase表中的每个列,都属于某个列族,列族属于表结构(必须在使用表之前定义),列不属于(插入数据的时候可以随时添加列),比如上面的infoaddressschool这些属于列族,info:ageinfo:love这些属于列。
  • Cell:row key和列以及时间戳唯一确定的单元,用来存储真实的数据,cell中的数据没有类型,全部是字节码形式存储。
  • 时间戳:每个cell中保存着同一份数据的多个版本,版本通过时间戳来索引。为了避免数据存在过多版本造成的的管理 (包括存贮和索引)负担,hbase提供了两种数据版本回收方式。一是保存数据的最后n个版本,二是保存最近一段时间内的版本(比如最近七天)。用户可以针对每个列族进行设置。

三、安装运行HBASE

wget http://apache.01link.hk/hbase/2.2.0/hbase-2.2.0-bin.tar.gz 
tar -zxvf hbase-2.2.0-bin.tar.gz 
cd hbase-2.2.0
vim conf/hbase-site.xml
<configuration>
    <property>
        <name>hbase.rootdir</name>
        <value>file:///tmp/hbase-${user.name}/hbase</value>
    </property>
</configuration>
# 单机模式运行,使用的是本次文件存储。不依赖Hadoop
./bin/start-hbase.sh
# 查看进程
jps
9758 HMaster
# 启动成功后可以在 http://localhost:16010 访问hbase的web页面
# 停止Hbase服务
./bin/stop-hbase.sh

# 进入HBASE shell
./bin/hbase shell
HBase Shell
Use "help" to get list of supported commands.
Use "exit" to quit this interactive shell.
For Reference, please visit: http://hbase.apache.org/2.0/book.html#shell
Version 2.2.0, rUnknown, Tue Jun 11 04:30:30 UTC 2019
Took 0.0128 seconds                                                                                                                                                                              
hbase(main):001:0>

四、shell DDL操作

# 建表
> create 'member','member_id','address','info'
Created table member
Took 1.6592 seconds                                                                                                                                                                              
=> Hbase::Table - member

# 列出所有表
> list
TABLE                                                                                                                                                                                            
member                                                                                                                                                                                           
1 row(s)
Took 0.1501 seconds                                                                                                                                                                              
=> ["member"]

# 列出表描述
> describe 'member'
Table member is ENABLED                                                                            member                                                                                            COLUMN FAMILIES DESCRIPTION                                                                         {NAME => 'address', VERSIONS => '1', EVICT_BLOCKS_ON_CLOSE => 'false', NEW_VERSION_BEHAVIOR => 'false', KEEP_DELETED_CELLS => 'FALSE', CACHE_DATA_ON_WRITE => 'false', DATA_BLOCK_ENCODING => 'NO
NE', TTL => 'FOREVER', MIN_VERSIONS => '0', REPLICATION_SCOPE => '0', BLOOMFILTER => 'ROW', CACHE_INDEX_ON_WRITE => 'false', IN_MEMORY => 'false', CACHE_BLOOMS_ON_WRITE => 'false', PREFETCH_BLO
CKS_ON_OPEN => 'false', COMPRESSION => 'NONE', BLOCKCACHE => 'true', BLOCKSIZE => '65536'}                                                                                                       

{NAME => 'info', VERSIONS => '1', EVICT_BLOCKS_ON_CLOSE => 'false', NEW_VERSION_BEHAVIOR => 'false', KEEP_DELETED_CELLS => 'FALSE', CACHE_DATA_ON_WRITE => 'false', DATA_BLOCK_ENCODING => 'NONE'
, TTL => 'FOREVER', MIN_VERSIONS => '0', REPLICATION_SCOPE => '0', BLOOMFILTER => 'ROW', CACHE_INDEX_ON_WRITE => 'false', IN_MEMORY => 'false', CACHE_BLOOMS_ON_WRITE => 'false', PREFETCH_BLOCKS
_ON_OPEN => 'false', COMPRESSION => 'NONE', BLOCKCACHE => 'true', BLOCKSIZE => '65536'}                                                                                                          

{NAME => 'member_id', VERSIONS => '1', EVICT_BLOCKS_ON_CLOSE => 'false', NEW_VERSION_BEHAVIOR => 'false', KEEP_DELETED_CELLS => 'FALSE', CACHE_DATA_ON_WRITE => 'false', DATA_BLOCK_ENCODING => '
NONE', TTL => 'FOREVER', MIN_VERSIONS => '0', REPLICATION_SCOPE => '0', BLOOMFILTER => 'ROW', CACHE_INDEX_ON_WRITE => 'false', IN_MEMORY => 'false', CACHE_BLOOMS_ON_WRITE => 'false', PREFETCH_B
LOCKS_ON_OPEN => 'false', COMPRESSION => 'NONE', BLOCKCACHE => 'true', BLOCKSIZE => '65536'}                                                                                                     

3 row(s)

QUOTAS                                                                                                                                                                                           
0 row(s)
Took 0.6478 seconds

# 删除一个列族,alter,disable,enable
> alter 'member',{NAME=>'member_id',METHOD=>'delete'}
# 在用describe 查看表会发现只有两个列族了

# 删除一个表,首先要先disable这个表
> disable 'member'
> drop 'member'

# 表是否存在
> exists 'member'

# 判断表是否enable
> is_enabled 'member'

# 判断表是否disable
> is_disabled 'member'

五、shell DML操作

# 插入数据
put'member','zhangsan','info:age','24'
put'member','zhangsan','info:birthday','1993-11-20'
put'member','zhangsan','info:country','china'
put'member','zhangsan','address:city','beijing'
put'member','lisi','info:birthday','1998-09-09'
put'member','lisi','info:favotite','movie'
put'member','lisi','address:city','beijing'

# 获取一个id的所有数据
> get'member','zhangsan'
COLUMN                                            CELL                                              address:city                                     timestamp=1567754003312, value=beijing             info:age                                         timestamp=1567753903167, value=24                 info:birthday                                    timestamp=1567753950339, value=1993-11-20         info:country                                     timestamp=1567753964169, value=china               1 row(s)
Took 0.1351 seconds
# 获取一个id,一个列族的所有数据
> get'member','zhangsan','info'
COLUMN                                            CELL                                             info:age                                         timestamp=1567753903167, value=24                 info:birthday                                    timestamp=1567753950339, value=1993-11-20         info:country                                     timestamp=1567753964169, value=china               1 row(s)
Took 0.0455 seconds
# 获取一个id,一个列族中一个列的所有数据
> get'member','zhangsan','info:age'
COLUMN                                            CELL                                             info:age                                         timestamp=1567753903167, value=24                 1 row(s)
Took 0.0364 seconds 

# 更新一条记录
> put'member','zhangsan','info:age','25'
> get'member','zhangsan','info:age'
COLUMN                                            CELL                                             info:age                                         timestamp=1567754315161, value=25                 1 row(s)
Took 0.0491 seconds
# 通过timestamp来获取指定版本的数据
> get'member','zhangsan',{COLUMN=>'info:age',TIMESTAMP=>1567753903167}
COLUMN                                            CELL                                             info:age                                         timestamp=1567753903167, value=24                 1 row(s)
Took 0.0342 seconds

# 全表扫描
> scan 'member'
ROW                                COLUMN+CELL                                                                                                                                    
  lisi                              column=address:city, timestamp=1567754078391, value=beijing       lisi                              column=info:birthday, timestamp=1567754038812, value=1998-09-09   lisi                              column=info:favotite, timestamp=1567754057750, value=movie       zhangsan                          column=address:city, timestamp=1567754003312, value=beijing       zhangsan                          column=info:age, timestamp=1567754315161, value=25               zhangsan                          column=info:birthday, timestamp=1567753950339, value=1993-11-20   zhangsan                          column=info:country, timestamp=1567753964169, value=china       2 row(s)
Took 0.1000 seconds

# 删除指定字段
> delete'member','zhangsan','info:age'
# 这个很有意思,如果有两个版本的数据,那么只会删除最新的一个版本,当再次查询的时候结果就是上一个版本的
> get'member','zhangsan','info:age'
COLUMN                                            CELL                                             info:age                                         timestamp=1567753903167, value=24                 1 row(s)
Took 0.0454 seconds
# 再次执行delete就能把当前版本删除
> delete'member','zhangsan','info:age'
> get'member','zhangsan','info:age'
COLUMN                                            CELL                                              0 row(s)
Took 0.0166 seconds

# 删除整行
> deleteall'member','lisi'
Took 0.0235 seconds

# 查询表中有多少行
> count'member'
1 row(s)
Took 0.3753 seconds                                                                                 => 1

# 给"zhangsan"这个id增加'info:age'字段,并使用counter实现递增
> incr 'member','zhangsan','info:age'
COUNTER VALUE = 1
Took 0.0948 seconds
> get 'member','zhangsan','info:age' 
COLUMN                                            CELL                                             info:age                                         timestamp=1567755056584, value=\x00\x00\x00\x00\x00\x00\x00\x01                                                             1 row(s)
Took 0.0504 seconds
> incr 'member','zhangsan','info:age'
COUNTER VALUE = 2
Took 0.0211 seconds
> get 'member','zhangsan','info:age' 
COLUMN                                            CELL                                              info:age                                         timestamp=1567755133527, value=\x00\x00\x00\x00\x00\x00\x00\x02                                                             1 row(s)
Took 0.0479 seconds
# 获取当前count的值
> get_counter'member','zhangsan','info:age'
COUNTER VALUE = 2
Took 0.0145 seconds

# 清空整张表
> truncate 'member'
Truncating 'member' table (it may take a while):
Disabling table...
Truncating table...
Took 2.1687 seconds

# 如何查看多个版本的数据,首先需要更新表结构,因为默认只保存一个版本数据,我们将保存的版本数设置为3
> alter'member',{NAME=>'info',VERSIONS=>3}
> put'member','zhangsan','info:age','26'
> scan 'member',{COLUMN=>'info:age',VERSIONS=>3}
ROW                                               COLUMN+CELL                                       zhangsan                                         column=info:age, timestamp=1567756662127, value=26  zhangsan                                         column=info:age, timestamp=1567756297089, value=25 1 row(s)
Took 0.0361 seconds 
> get 'member','zhangsan',{COLUMN=>'info',VERSIONS=>3}
COLUMN                                            CELL                                              info:                                            timestamp=1567755827530, value=info1               info:age                                         timestamp=1567756662127, value=26                 info:age                                         timestamp=1567756297089, value=25                 info:birthday                                    timestamp=1567755398376, value=1993-11-20         info:country                                     timestamp=1567755402535, value=china               1 row(s)
Took 0.0622 seconds

六、遇到的问题

问题1:

运行hbase shell时报错:

./bin/hbase shell
2019-09-06 11:03:21,079 WARN  [main] util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
HBase Shell
Use "help" to get list of supported commands.
Use "exit" to quit this interactive shell.
For Reference, please visit: http://hbase.apache.org/2.0/book.html#shell
Version 2.2.0, rUnknown, Tue Jun 11 04:30:30 UTC 2019
Took 0.0080 seconds                                                                                                                                                                              
NotImplementedError: fstat unimplemented unsupported or native support failed to load; see http://wiki.jruby.org/Native-Libraries
  initialize at org/jruby/RubyIO.java:1013
        open at org/jruby/RubyIO.java:1154
  initialize at uri:classloader:/META-INF/jruby.home/lib/ruby/stdlib/irb/input-method.rb:141
  initialize at uri:classloader:/META-INF/jruby.home/lib/ruby/stdlib/irb/context.rb:70
  initialize at uri:classloader:/META-INF/jruby.home/lib/ruby/stdlib/irb.rb:426
  initialize at /home/wangjun/software/hbase-2.2.0/lib/ruby/irb/hirb.rb:47
       start at /home/wangjun/software/hbase-2.2.0/bin/../bin/hirb.rb:207
      <main> at /home/wangjun/software/hbase-2.2.0/bin/../bin/hirb.rb:219

解决方案:

Unable to load native-hadoop library for your platform... using builtin-java classes where applicable这个问题只需要修改conf/hbase-env.sh,加入:

export LD_LIBRARY_PATH=${hadoop_home}/lib/native:$LD_LIBRARY_PATH

${hadoop_home}为你的hadoop的安装路径。

NotImplementedError: fstat unimplemented unsupported or native support failed to load这个问题的解决方案:

sudo apt-get install jruby -y
sudo apt-get install asciidoctor -y

参考:

https://www.cnblogs.com/gaopeng527/p/4967186.html

https://blog.csdn.net/scutshuxue/article/details/6988348

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,324评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,303评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,192评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,555评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,569评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,566评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,927评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,583评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,827评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,590评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,669评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,365评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,941评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,928评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,159评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,880评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,399评论 2 342