人脸检测

写在前面

  • 态度决定高度!让优秀成为一种习惯!
  • 世界上没有什么事儿是加一次班解决不了的,如果有,就加两次!(- - -茂强)

人脸识别一般步骤

  • 人脸检测
  • 人脸特征提取
  • 人脸识别
    本文主要介绍人脸检测

人脸检测

人脸检测就是从一张图片中检测出人脸的过程
这里主要看两种检测方式,一种是dlib一种是 mtcnn
文本对于其原理不再赘述,想了解原理的可以参考原论文,如果有时间,后边会专门介绍原理

dlib

dlib是c++开发开源的的机器学习库
废话不多说,直接看下效果


face_detect
import dlib
import cv2
# 初始化dlib人脸检测器
detector = dlib.get_frontal_face_detector()
#2.使用官方提供的模型构建特征提取器
predictor = dlib.shape_predictor("/Users/songyaheng/Downloads/shape_predictor_68_face_landmarks.dat")
img = cv2.imread("/Users/songyaheng/Downloads/faces.JPG")
faces = detector(img,1)
for k,d in enumerate(faces):
    cv2.rectangle(img,(d.left(),d.top()),(d.right(),d.bottom()),(0,255,0),3)
cv2.imshow("capture", img)
cv2.imwrite("/Users/songyaheng/Downloads/faces2.JPG", img)
cv2.waitKey(0)

mtcnn

face_detect
import tensorflow as tf
import align.detect_face as detect_face
import cv2
gpu_memory_fraction=0.0
with tf.Graph().as_default():
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory_fraction)
    sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
    with sess.as_default():
        pnet, rnet, onet = detect_face.create_mtcnn(sess, None)
#face detection parameters
minsize = 20 # minimum size of face
threshold = [ 0.6, 0.7, 0.7 ]  # three steps's threshold
factor = 0.709 # scale factor
img = cv2.imread("/Users/songyaheng/Downloads/faces.JPG")
bounding_boxes, _ = detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor)
for face_position in bounding_boxes:
    face_position=face_position.astype(int)
    cv2.rectangle(img, (face_position[0],
                          face_position[1]),
                  (face_position[2], face_position[3]),
                  (0, 255, 0), 2)
cv2.imwrite("/Users/songyaheng/Downloads/faces3.JPG", img)
cv2.waitKey(0)

另一组对比

原图(图片来自百度图片)

这次我们从明暗程度对比


检测对比

利用mtcnn是一个都没能识别出来,所以对于一些背光的照片来说,还是利用dlib相对来说比较好一点
那么问题来了,在人脸识别中,不同明暗程度的人脸即使是一个人,所提取的人脸特征向量也是相差很大的,所以要想提高人脸识别的精准度,对于人脸图片的曝光度归一化还是相当重要的,我们如何归一化这种背光度较高的脸呢?
我们可以先通过dlib把人脸提取出来,然后通过算法改变这个图片的像素值,然后把人脸变亮,这样我们就可以拿到归一化的人脸了,所以难点就放在了我们如何把不同曝光度的人脸归一化到相对统一的人脸曝光度上呢?如下图


转换人脸亮度值

比较暗的就是上边dlib提取的三个原始图片的,
我们在看一组图
对比图

从该图上可以看出,该算法能够将比较暗的图变得亮一点,比较亮的图变得暗一点。也就是又一个相对统一的亮度值
我们最终提取出来的人脸应该是这样的:


提取的人脸

提取的人脸

这些提取的人脸都基本拥有相对统一的曝光度,而且更接近于人的皮肤颜色。

算法

首先我们提取人脸区域,提取后的人脸我们首先计算平均的亮度值,然后基于人体肤色的RGB和平均的RGB值,我们采用一种归一化方式,这种归一化方式可以把输入的人脸RGB值相对归一化到该肤色RGB值上,其实就是一种映射关系

比较简单的就是
映射公式

其中S(x)就是原始图像空间,T(x)就是人体肤色空间

本文采用的就是该方法进行映射计算的

到此我们的人脸检测部分已经基本结束
下期我们将介绍基于以上提取出来的人脸进行特征提取,欢迎关注。

如果对人脸识别,图像处理等方面有兴趣,欢迎一块学习
QQ:458798698
微信号:songwindwind

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,214评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,307评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,543评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,221评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,224评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,007评论 1 284
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,313评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,956评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,441评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,925评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,018评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,685评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,234评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,240评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,464评论 1 261
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,467评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,762评论 2 345

推荐阅读更多精彩内容