打开VIVADO,建一个工程,板卡选择ZC702。
点击左边栏的IP INTERGRETOR-->Create Block Design。
-
右边Diagram-->加号(ADD IP)。
- 添加ZYNQ7 Processing System和XADC Wizard两个IP核。
- 点击Run Block Automation以及Run Connection Automation,IP核将自己连接好。
依次点击综合,实现,生成比特流。
File-->Export Hardware和File-->Launch SDK。
在打开的SDK下,新建一个Application Project。Project name:Hello,BSP:Create New-->next-->选择Hello WorldàFinish。
- 板卡连接电脑,查询串口号,打开串口接收工具,设置如下(注意不要勾选RTS/CTS)。
SDK下Xilinx Tools-->Program FPGA。
Project Explorer-->右键HELLO文件夹-->Build Project。
Project Explorer-->右键HELLO文件夹-->RUNàLaunch on hardware。
如果串口工具打印出了“HELLO WORLD”则说明板卡连接没有问题。
按照步骤8重新创建一个Application Project名字为XADC。
~\Xilinx\SDK\2017.2\data\embeddedsw\XilinxProcessorIPLib\drivers\sysmon_v7_3\examples下找到PL端XADC的驱动例程xsysmon_polled_printf_example.c将其复制到你的路径下,我的为C:\FPGA_wkp\DuYu\project_1\project_1.sdk\xadc\src。
这是如果一切正常就能够打印出一次板卡传感器读到的信息,并在串口打印。
寻找一个计时器能够在串口每秒钟打印出一次传感器信息,找到了一个叫XSCU的TIMER查找相应的例程,在xsysmon_polled_printf_example.c中加入相应的定时器完成每秒钟打印一次的操作。
/***************************** Include Files ********************************/
#include "xsysmon.h"
#include "xparameters.h"
#include "xstatus.h"
#include "stdio.h"
#include "xil_printf.h"
/******************************MY CODE***************************************/
#include "xscutimer.h"
/************************** Constant Definitions ****************************/
/*
* The following constants map to the XPAR parameters created in the
* xparameters.h file. They are defined here such that a user can easily
* change all the needed parameters in one place.
*/
#define SYSMON_DEVICE_ID XPAR_SYSMON_0_DEVICE_ID
/**************************** Type Definitions ******************************/
/***************** Macros (Inline Functions) Definitions ********************/
#define printf xil_printf /* Small foot-print printf function */
/************************** Function Prototypes *****************************/
static int SysMonPolledPrintfExample(u16 SysMonDeviceId);
static int SysMonFractionToInt(float FloatNum);
/************************** Variable Definitions ****************************/
static XSysMon SysMonInst; /* System Monitor driver instance */
/****************************************************************************/
/**
*
* Main function that invokes the polled example in this file.
*
* @param None.
*
* @return
* - XST_SUCCESS if the example has completed successfully.
* - XST_FAILURE if the example has failed.
*
* @note None.
*
*****************************************************************************/
int main(void)
{
int Status;
/************************** Function Prototypes *****************************/
int Status1;
int timer_value;
int counter = 0;
XScuTimer my_Timer;
XScuTimer_Config *Timer_Config;
Timer_Config = XScuTimer_LookupConfig(XPAR_PS7_SCUTIMER_0_DEVICE_ID);
Status1 = XScuTimer_CfgInitialize(&my_Timer,Timer_Config,Timer_Config->BaseAddr);
XScuTimer_LoadTimer(&my_Timer,XPAR_PS7_CORTEXA9_0_CPU_CLK_FREQ_HZ/2);
XScuTimer_Start(&my_Timer);
/*
* Run the SysMonitor polled example, specify the Device ID that is
* generated in xparameters.h.
*/
while(1)
{
timer_value = XScuTimer_GetCounterValue(&my_Timer);
if (timer_value==0)
{
Status = SysMonPolledPrintfExample(SYSMON_DEVICE_ID);
xil_printf("Sysmon polled printf Example success %d\r\n",counter++);
XScuTimer_RestartTimer(&my_Timer);
}
}
return 0;
}
/****************************************************************************/
/**
*
* This function runs a test on the System Monitor/ADC device using the
* driver APIs.
* This function does the following tasks:
* - Initiate the System Monitor device driver instance
* - Run self-test on the device
* - Setup the sequence registers to continuously monitor on-chip
* temperature, VCCINT and VCCAUX
* - Setup configuration registers to start the sequence
* - Read the latest on-chip temperature, VCCINT and VCCAUX
*
* @param SysMonDeviceId is the XPAR_<SYSMON_ADC_instance>_DEVICE_ID value
* from xparameters.h.
*
* @return
* - XST_SUCCESS if the example has completed successfully.
* - XST_FAILURE if the example has failed.
*
* @note None
*
****************************************************************************/
int SysMonPolledPrintfExample(u16 SysMonDeviceId)
{
int Status;
XSysMon_Config *ConfigPtr;
u32 TempRawData;
u32 VccAuxRawData;
u32 VccIntRawData;
float TempData;
float VccAuxData;
float VccIntData;
float MaxData;
float MinData;
XSysMon *SysMonInstPtr = &SysMonInst;
printf("\r\nEntering the SysMon Polled Example. \r\n");
/*
* Initialize the SysMon driver.
*/
ConfigPtr = XSysMon_LookupConfig(SysMonDeviceId);
if (ConfigPtr == NULL) {
return XST_FAILURE;
}
XSysMon_CfgInitialize(SysMonInstPtr, ConfigPtr,
ConfigPtr->BaseAddress);
/*
* Self Test the System Monitor/ADC device
*/
Status = XSysMon_SelfTest(SysMonInstPtr);
if (Status != XST_SUCCESS) {
return XST_FAILURE;
}
/*
* Disable the Channel Sequencer before configuring the Sequence
* registers.
*/
XSysMon_SetSequencerMode(SysMonInstPtr, XSM_SEQ_MODE_SAFE);
/*
* Disable all the alarms in the Configuration Register 1.
*/
XSysMon_SetAlarmEnables(SysMonInstPtr, 0x0);
/*
* Setup the Averaging to be done for the channels in the
* Configuration 0 register as 16 samples:
*/
XSysMon_SetAvg(SysMonInstPtr, XSM_AVG_16_SAMPLES);
/*
* Setup the Sequence register for 1st Auxiliary channel
* Setting is:
* - Add acquisition time by 6 ADCCLK cycles.
* - Bipolar Mode
*
* Setup the Sequence register for 16th Auxiliary channel
* Setting is:
* - Add acquisition time by 6 ADCCLK cycles.
* - Unipolar Mode
*/
Status = XSysMon_SetSeqInputMode(SysMonInstPtr, XSM_SEQ_CH_AUX00);
if (Status != XST_SUCCESS) {
return XST_FAILURE;
}
Status = XSysMon_SetSeqAcqTime(SysMonInstPtr, XSM_SEQ_CH_AUX15 |
XSM_SEQ_CH_AUX00);
if (Status != XST_SUCCESS) {
return XST_FAILURE;
}
/*
* Enable the averaging on the following channels in the Sequencer
* registers:
* - On-chip Temperature, VCCINT/VCCAUX supply sensors
* - 1st/16th Auxiliary Channels
* - Calibration Channel
*/
Status = XSysMon_SetSeqAvgEnables(SysMonInstPtr, XSM_SEQ_CH_TEMP |
XSM_SEQ_CH_VCCINT |
XSM_SEQ_CH_VCCAUX |
XSM_SEQ_CH_AUX00 |
XSM_SEQ_CH_AUX15 |
XSM_SEQ_CH_CALIB);
if (Status != XST_SUCCESS) {
return XST_FAILURE;
}
/*
* Enable the following channels in the Sequencer registers:
* - On-chip Temperature, VCCINT/VCCAUX supply sensors
* - 1st/16th Auxiliary Channel
* - Calibration Channel
*/
Status = XSysMon_SetSeqChEnables(SysMonInstPtr, XSM_SEQ_CH_TEMP |
XSM_SEQ_CH_VCCINT |
XSM_SEQ_CH_VCCAUX |
XSM_SEQ_CH_AUX00 |
XSM_SEQ_CH_AUX15 |
XSM_SEQ_CH_CALIB);
if (Status != XST_SUCCESS) {
return XST_FAILURE;
}
/*
* Set the ADCCLK frequency equal to 1/32 of System clock for the System
* Monitor/ADC in the Configuration Register 2.
*/
XSysMon_SetAdcClkDivisor(SysMonInstPtr, 32);
/*
* Set the Calibration enables.
*/
XSysMon_SetCalibEnables(SysMonInstPtr,
XSM_CFR1_CAL_PS_GAIN_OFFSET_MASK |
XSM_CFR1_CAL_ADC_GAIN_OFFSET_MASK);
/*
* Enable the Channel Sequencer in continuous sequencer cycling mode.
*/
XSysMon_SetSequencerMode(SysMonInstPtr, XSM_SEQ_MODE_CONTINPASS);
/*
* Wait till the End of Sequence occurs
*/
XSysMon_GetStatus(SysMonInstPtr); /* Clear the old status */
while ((XSysMon_GetStatus(SysMonInstPtr) & XSM_SR_EOS_MASK) !=
XSM_SR_EOS_MASK);
/*
* Read the on-chip Temperature Data (Current/Maximum/Minimum)
* from the ADC data registers.
*/
TempRawData = XSysMon_GetAdcData(SysMonInstPtr, XSM_CH_TEMP);
TempData = XSysMon_RawToTemperature(TempRawData);
printf("\r\nThe Current Temperature is %0d.%03d Centigrades.\r\n",
(int)(TempData), SysMonFractionToInt(TempData));
TempRawData = XSysMon_GetMinMaxMeasurement(SysMonInstPtr, XSM_MAX_TEMP);
MaxData = XSysMon_RawToTemperature(TempRawData);
printf("The Maximum Temperature is %0d.%03d Centigrades. \r\n",
(int)(MaxData), SysMonFractionToInt(MaxData));
TempRawData = XSysMon_GetMinMaxMeasurement(SysMonInstPtr, XSM_MIN_TEMP);
MinData = XSysMon_RawToTemperature(TempRawData);
printf("The Minimum Temperature is %0d.%03d Centigrades. \r\n",
(int)(MinData), SysMonFractionToInt(MinData));
/*
* Read the VccInt Votage Data (Current/Maximum/Minimum) from the
* ADC data registers.
*/
VccIntRawData = XSysMon_GetAdcData(SysMonInstPtr, XSM_CH_VCCINT);
VccIntData = XSysMon_RawToVoltage(VccIntRawData);
printf("\r\nThe Current VCCINT is %0d.%03d Volts. \r\n",
(int)(VccIntData), SysMonFractionToInt(VccIntData));
VccIntRawData = XSysMon_GetMinMaxMeasurement(SysMonInstPtr,
XSM_MAX_VCCINT);
MaxData = XSysMon_RawToVoltage(VccIntRawData);
printf("The Maximum VCCINT is %0d.%03d Volts. \r\n",
(int)(MaxData), SysMonFractionToInt(MaxData));
VccIntRawData = XSysMon_GetMinMaxMeasurement(SysMonInstPtr,
XSM_MIN_VCCINT);
MinData = XSysMon_RawToVoltage(VccIntRawData);
printf("The Minimum VCCINT is %0d.%03d Volts. \r\n",
(int)(MinData), SysMonFractionToInt(MinData));
/*
* Read the VccAux Votage Data (Current/Maximum/Minimum) from the
* ADC data registers.
*/
VccAuxRawData = XSysMon_GetAdcData(SysMonInstPtr, XSM_CH_VCCAUX);
VccAuxData = XSysMon_RawToVoltage(VccAuxRawData);
printf("\r\nThe Current VCCAUX is %0d.%03d Volts. \r\n",
(int)(VccAuxData), SysMonFractionToInt(VccAuxData));
VccAuxRawData = XSysMon_GetMinMaxMeasurement(SysMonInstPtr,
XSM_MAX_VCCAUX);
MaxData = XSysMon_RawToVoltage(VccAuxRawData);
printf("The Maximum VCCAUX is %0d.%03d Volts. \r\n",
(int)(MaxData), SysMonFractionToInt(MaxData));
VccAuxRawData = XSysMon_GetMinMaxMeasurement(SysMonInstPtr,
XSM_MIN_VCCAUX);
MinData = XSysMon_RawToVoltage(VccAuxRawData);
printf("The Minimum VCCAUX is %0d.%03d Volts. \r\n\r\n",
(int)(MinData), SysMonFractionToInt(MinData));
printf("Exiting the SysMon Polled Example. \r\n");
return XST_SUCCESS;
}
/****************************************************************************/
/**
*
* This function converts the fraction part of the given floating point number
* (after the decimal point)to an integer.
*
* @param FloatNum is the floating point number.
*
* @return Integer number to a precision of 3 digits.
*
* @note
* This function is used in the printing of floating point data to a STDIO device
* using the xil_printf function. The xil_printf is a very small foot-print
* printf function and does not support the printing of floating point numbers.
*
*****************************************************************************/
int SysMonFractionToInt(float FloatNum)
{
float Temp;
Temp = FloatNum;
if (FloatNum < 0) {
Temp = -(FloatNum);
}
return( ((int)((Temp -(float)((int)Temp)) * (1000.0f))));
}