Golang sync.Pool 和 伪共享false share

参考
go语言的官方包sync.Pool的实现原理和适用场景
深入Golang之sync.Pool详解
伪共享(false sharing),并发编程无声的性能杀手

一、简述

众所周知,go是自动垃圾回收的(garbage collector),这大大减少了程序编程负担。但gc是一把双刃剑,带来了编程的方便但同时也增加了运行时开销,使用不当甚至会严重影响程序的性能。因此性能要求高的场景不能任意产生太多的垃圾(有gc但又不能完全依赖它挺恶心的),如何解决呢?那就是要重用对象了,我们可以简单的使用一个chan把这些可重用的对象缓存起来,但如果很多goroutine竞争一个chan性能肯定是问题.....由于golang团队认识到这个问题普遍存在,为了避免大家重造车轮,因此官方统一出了一个包Pool。但为什么放到sync包里面也是有的迷惑的,先不讨论这个问题。

先来看看如何使用一个pool:

package main
 
import(
    "fmt"
    "sync"
)
 
func main() {
    p := &sync.Pool{
        New: func() interface{} {
            return 0
        },
    }
 
    a := p.Get().(int)
    p.Put(1)
    b := p.Get().(int)
    fmt.Println(a, b)
}

上面创建了一个缓存int对象的一个pool,先从池获取一个对象然后放进去一个对象再取出一个对象,程序的输出是0 1。创建的时候可以指定一个New函数,获取对象的时候如何在池里面找不到缓存的对象将会使用指定的new函数创建一个返回,如果没有new函数则返回nil。用法是不是很简单,我们这里就不多说,下面来说说我们关心的问题:

1、缓存对象的数量和期限

上面我们可以看到pool创建的时候是不能指定大小的,所有sync.Pool的缓存对象数量是没有限制的(只受限于内存),因此使用sync.pool是没办法做到控制缓存对象数量的个数的。另外sync.pool缓存对象的期限是很诡异的,先看一下src/pkg/sync/pool.go里面的一段实现代码:

func init() {
    runtime_registerPoolCleanup(poolCleanup)
}

可以看到pool包在init的时候注册了一个poolCleanup函数,它会清除所有的pool里面的所有缓存的对象,该函数注册进去之后会在每次gc之前都会调用,因此sync.Pool缓存的期限只是两次gc之间这段时间。例如我们把上面的例子改成下面这样之后,输出的结果将是0 0。正因gc的时候会清掉缓存对象,也不用担心pool会无限增大的问题。

    a := p.Get().(int)
    p.Put(1)
    runtime.GC()
    b := p.Get().(int)
    fmt.Println(a, b)

这是很多人错误理解的地方,正因为这样,我们是不可以使用sync.Pool去实现一个socket连接池的。

2、缓存对象的开销

如何在多个goroutine之间使用同一个pool做到高效呢?官方的做法就是尽量减少竞争,因为sync.pool为每个P(对应cpu,不了解的童鞋可以去看看golang的调度模型介绍)都分配了一个子池,如下图:


image.png

当执行一个pool的get或者put操作的时候都会先把当前的goroutine固定到某个P的子池上面,然后再对该子池进行操作。每个子池里面有一个私有对象和共享列表对象,私有对象是只有对应的P能够访问,因为一个P同一时间只能执行一个goroutine,因此对私有对象存取操作是不需要加锁的。共享列表是和其他P分享的,因此操作共享列表是需要加锁的。

获取对象过程是:

1)固定到某个P,尝试从私有对象获取,如果私有对象非空则返回该对象,并把私有对象置空;

2)如果私有对象是空的时候,就去当前子池的共享列表获取(需要加锁);

3)如果当前子池的共享列表也是空的,那么就尝试去其他P的子池的共享列表偷取一个(需要加锁);

4)如果其他子池都是空的,最后就用用户指定的New函数产生一个新的对象返回。

可以看到一次get操作最少0次加锁,最大N(N等于MAXPROCS)次加锁。

归还对象的过程:

1)固定到某个P,如果私有对象为空则放到私有对象;

2)否则加入到该P子池的共享列表中(需要加锁)。

可以看到一次put操作最少0次加锁,最多1次加锁。

由于goroutine具体会分配到那个P执行是golang的协程调度系统决定的,因此在MAXPROCS>1的情况下,多goroutine用同一个sync.Pool的话,各个P的子池之间缓存的对象是否平衡以及开销如何是没办法准确衡量的。但如果goroutine数目和缓存的对象数目远远大于MAXPROCS的话,概率上说应该是相对平衡的。

总的来说,sync.Pool的定位不是做类似连接池的东西,它的用途仅仅是增加对象重用的几率,减少gc的负担,而开销方面也不是很便宜的。

二、源码

sync.Pool首先声明了两个结构体

// Local per-P Pool appendix.
type poolLocalInternal struct {
    private interface{}   // Can be used only by the respective P.
    shared  []interface{} // Can be used by any P.
    Mutex                 // Protects shared.
}

type poolLocal struct {
    poolLocalInternal

    // Prevents false sharing on widespread platforms with
    // 128 mod (cache line size) = 0 .
    pad [128 - unsafe.Sizeof(poolLocalInternal{})%128]byte
}

为了使得在多个goroutine中高效的使用goroutine,sync.Pool为每个P(对应CPU)都分配一个本地池,当执行Get或者Put操作的时候,会先将goroutine和某个P的子池关联,再对该子池进行操作。 每个P的子池分为私有对象和共享列表对象,私有对象只能被特定的P访问,共享列表对象可以被任何P访问。因为同一时刻一个P只能执行一个goroutine,所以无需加锁,但是对共享列表对象进行操作时,因为可能有多个goroutine同时操作,所以需要加锁。

值得注意的是poolLocal结构体中有个pad成员,目的是为了防止false sharing。cache使用中常见的一个问题是false sharing。当不同的线程同时读写同一cache line上不同数据时就可能发生false sharing。false sharing会导致多核处理器上严重的系统性能下降。具体的可以参考伪共享(false sharing),并发编程无声的性能杀手

类型sync.Pool有两个公开的方法,一个是Get,一个是Put, 我们先来看一下Put的源码。

// Put adds x to the pool.
func (p *Pool) Put(x interface{}) {
    if x == nil {
        return
    }
    if race.Enabled {
        if fastrand()%4 == 0 {
            // Randomly drop x on floor.
            return
        }
        race.ReleaseMerge(poolRaceAddr(x))
        race.Disable()
    }
    l := p.pin()
    if l.private == nil {
        l.private = x
        x = nil
    }
    runtime_procUnpin()
    if x != nil {
        l.Lock()
        l.shared = append(l.shared, x)
        l.Unlock()
    }
    if race.Enabled {
        race.Enable()
    }
}

1.如果放入的值为空,直接return.
2.检查当前goroutine的是否设置对象池私有值,如果没有则将x赋值给其私有成员,并将x设置为nil。
3.如果当前goroutine私有值已经被设置,那么将该值追加到共享列表。

func (p *Pool) Get() interface{} {
    if race.Enabled {
        race.Disable()
    }
    l := p.pin()
    x := l.private
    l.private = nil
    runtime_procUnpin()
    if x == nil {
        l.Lock()
        last := len(l.shared) - 1
        if last >= 0 {
            x = l.shared[last]
            l.shared = l.shared[:last]
        }
        l.Unlock()
        if x == nil {
            x = p.getSlow()
        }
    }
    if race.Enabled {
        race.Enable()
        if x != nil {
            race.Acquire(poolRaceAddr(x))
        }
    }
    if x == nil && p.New != nil {
        x = p.New()
    }
    return x
}

1.尝试从本地P对应的那个本地池中获取一个对象值, 并从本地池冲删除该值。
2.如果获取失败,那么从共享池中获取, 并从共享队列中删除该值。
3.如果获取失败,那么从其他P的共享池中偷一个过来,并删除共享池中的该值(p.getSlow())。
4.如果仍然失败,那么直接通过New()分配一个返回值,注意这个分配的值不会被放入池中。New()返回用户注册的New函数的值,如果用户未注册New,那么返回nil。

三、总结

通过以上的解读,我们可以看到,Get方法并不会对获取到的对象值做任何的保证,因为放入本地池中的值有可能会在任何时候被删除,但是不通知调用者。放入共享池中的值有可能被其他的goroutine偷走。 所以对象池比较适合用来存储一些临时切状态无关的数据,但是不适合用来存储数据库连接的实例,因为存入对象池重的值有可能会在垃圾回收时被删除掉,这违反了数据库连接池建立的初衷。

根据上面的说法,Golang的对象池严格意义上来说是一个临时的对象池,适用于储存一些会在goroutine间分享的临时对象。主要作用是减少GC,提高性能。在Golang中最常见的使用场景是fmt包中的输出缓冲区。

在Golang中如果要实现连接池的效果,可以用container/list来实现,开源界也有一些现成的实现,比如go-commons-pool,具体的读者可以去自行了解。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,445评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,889评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,047评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,760评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,745评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,638评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,011评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,669评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,923评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,655评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,740评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,406评论 4 320
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,995评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,961评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,023评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,483评论 2 342

推荐阅读更多精彩内容