1、RunLoop的影响
原因分析:
定时器被添加在主线程中,由于定时器在一个RunLoop中被检测一次,所以如果在这一次的RunLoop中做了耗时的操作,当前RunLoop持续的时间超过了定时器的间隔时间,那么下一次定时就被延后了。
解决方法:
- 在子线程中创建timer,在主线程进行定时任务的操作
- 在子线程中创建timer,在子线程中进行定时任务的操作,需要UI操作时切换回主线程进行操作
2、RunLoop模式的影响
原因分析:
主线程的RunLoop有两种预设的模式,RunLoopDefaultMode和TrackingRunLoopMode。
当定时器被添加到主线程中且无指定模式时,会被默认添加到DefaultMode中,一般情况下定时器会正常触发定时任务。但是当用户进行UI交互操作时(比如滑动tableview),主线程会切换到TrackingRunLoopMode,在此模式下定时器并不会被触发。
解决方法:
添加定时器到主线程的CommonMode中或者子线程中
其他方式的Timer
1、纳秒级精度的Timer
- 使用
mach_absolute_time()
来实现更高精度的定时器。 - iPhone上有这么一个均匀变化的东西来提供给我们作为时间参考,就是CPU的时钟周期数(ticks)。
- 通过
mach_absolute_time()
获取CPU已运行的tick数量。将tick数经过转换变成秒或者纳秒,从而实现时间的计算。
以下代码实现来源于网络:
#include <mach/mach.h>
#include <mach/mach_time.h>
static const uint64_t NANOS_PER_USEC = 1000ULL;
static const uint64_t NANOS_PER_MILLISEC = 1000ULL * NANOS_PER_USEC;
static const uint64_t NANOS_PER_SEC = 1000ULL * NANOS_PER_MILLISEC;
static mach_timebase_info_data_t timebase_info;
static uint64_t nanos_to_abs(uint64_t nanos) {
return nanos * timebase_info.denom / timebase_info.numer;
}
void waitSeconds(int seconds) {
mach_timebase_info(&timebase_info);
uint64_t time_to_wait = nanos_to_abs(seconds * NANOS_PER_SEC);
uint64_t now = mach_absolute_time();
mach_wait_until(now + time_to_wait);
}
2、CADisplayLink
CADisplayLink是一个频率能达到屏幕刷新率的定时器类。iPhone屏幕刷新频率为60帧/秒,也就是说最小间隔可以达到1/60s。
基本使用:
CADisplayLink * displayLink = [CADisplayLink displayLinkWithTarget:self selector:@selector(logInfo)];
[displayLink addToRunLoop:[NSRunLoop currentRunLoop] forMode:NSDefaultRunLoopMode];
3、GCD定时器
我们知道,RunLoop是dispatch_source_t
实现的timer,所以理论上来说,GCD定时器的精度比NSTimer只高不低。
基本使用:
NSTimeInterval interval = 1.0;
_timer = dispatch_source_create(DISPATCH_SOURCE_TYPE_TIMER, 0, 0, dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0));
dispatch_source_set_timer(_timer, dispatch_walltime(NULL, 0), interval * NSEC_PER_SEC, 0);
dispatch_source_set_event_handler(_timer, ^{
NSLog(@"GCD timer test");
});
dispatch_resume(_timer);