最短路径(二)

Dijkstra算法
在为了寻找加权无向图中的最小生成树的Prim算法中,构造最小生成树的每一步都向这棵树中添加一条新的边。Dijkstra算法采用了类似的方法来计算最短路径树。首先将distTo[s]初始化为0,distTo[]中的其他元素初始化为无穷大。然后将distTo[]最小的非树顶点松弛并加入树中,直到所有的顶点都在树中或所有的非树顶点distTo[]都为无穷大。

在一幅含有v个顶点和e条边的加权有向图中,使用Dijkstra算法计算根结点为给定的最短路径树所需的空间与v成正比,时间与elogv成正比(最坏情况下)。

最短路径的Dijkstra算法

public class Dijikstra{
    private DirectedEdge[] edgeTo;
    private double[] distTo;
    private IndexMinPQ<Double> pq;

    public DijikstraSP(EdgeWeightedDigraph G, int s){
        edgeTo = new DirectedEdge[G.V()];
        distTo = new double[G.V()];
        pq = new IndexMinPQ<Double>(G.V());
        for(int v = 0; v<G.V(); v++)
            distTo[v] = Double.POSITIVE_INFINITY;
        distTo[s] = 0.0;
        pq.insert(s, 0, 0);
        while(!pq.isEmpty())
            relax(G, pq.delMin());
    }
    private void relax(EdgeWeightedDigraph G, int v){
        for(DirectedEdge e:G.adj(v)){
            int w = e.to();
            if(distTo[w] > distTo[v] + e.weighted()){
                distTo[w] = distTo[v] + e.weighted();
                edgeTo[w] = e;
                if(pq.contains(w))  pq.change(w, distTo[w]);
                else        pq.insert(w,distTo[w]);
            }
        }
    }
    public double distTo(int v)
    public boolean hasPathTo(int v)
    public Iterable<DirectedEdge> pathTo(int v)
}

无环加权有向图中的最短路径算法
许多应用中的加权有向图中都是不含有环的。本算法比Dijkstra算法更快,更简单的在无环加权有向图中找出最短路径,它的特点是:

  • 能在线性时间内解决单点最短路径问题
  • 能够处理负权重的边
  • 能够解决相关的问题,例如找出最长的路径

将拓扑排序与顶点的放松结合起来,就可以得到该算法。首先将distTo[0]初始化为0,其他distTo[]元素初始化为无穷大,然后一次按照拓扑排序的顺序松弛所有顶点。

public class AcyclicSP{
    private DirectedEdge[] edgeTo;
    private double[] distTo;
    public AcyclicSP(EdgeWeightedDigraph G, int s){
        edgeTo = new DirectedEdge[G.V()];
        distTo = new double[G.V()];
        for ( int v=0; v<G.V(); v++)
            distTo[v] = Double.POSITIVE_INFINITY;
        distTo[s] = 0;
        Topological top = new Topological(G);
        for( int v:top.order())
            relax(G,v);
    }
    private void relax(EdgeWeightedDigraph G,int v)
    public double distTo(int v)
    public boolean hasPathTo(int v)
    public Iterable<DirectedEdge> pathTo(int v)

算法应用

优先级限制下的并行任务调度问题。 给定一组需要完成的任务和每个任务需要的时间,以及一组关于任务完成的先后次序的优先级限制。在满足限制条件的前提下如何在若干相同的处理器上安排任务并在最短时间内完成任务。

解决并行任务调度问题的关键路径方法步骤如下:创建一幅无环加权有向图,其中包含一个起点s和一个终点t且每个任务都对应着两个顶点(一个起始顶点和一个终止顶点)。对于每个任务都有一条从它的起始顶点到终止顶点的边,边的权重即为任务所需要的时间。对于每条优先级限制v->w,添加一条从v的结束顶点指向w的起始顶点权重为0的边。我们还需要为每个任务添加一条从起点指向该任务的起始顶点的权重为0的边以及一条从该任务的终止顶点指向到终点的权重为0的边。这样每个任务预计开始的时间即为从起点到它的起始顶点的最长距离。

public class CPM{
    public static void main(String[] args){
        int N = StdIn.readInt();  StdIn.readLine();
        EdgeWeightedDigraph G;
        G = new EdgeWeightedDigraph(2*N+2);
        int s = 2*N, t=2*N+1;
        for(int i=0; i<N; i++){
            String[] a= StdIn.readLine().split("\\s+");
            double duration = Double.parseDouble(a[0]);
            G.addEdge(new DirectedEdge(i, i+N, duration));
            G.addEdge(new DirectedEdge(s,i,0));
            G.addEdge(new DirectedEdge(i+N,t,0)
            for(int j=1; j<a.length;j++){
                int successor = Integer.parseInt(a[j]);
                G.addEdge(new DirectedEdge(i+N, successor, 0));
            }
        }
        AcyclicLP lp = new AcyclicLP(G, s);
        StdOut.println("Start times:");
        for(int i=0;i<N; i++)
            StdOut.printf("%4d: %5.1f\n",i, lp.distTo(i));
        StdOut.printf("Finsh time:%5.1f\n",lp.distTo(t));
    }
}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容