本文我参加Udacity的深度学习基石课程的学习的第3周总结,主题是在学习 TensorFlow 之前,先自己做一个miniflow,通过本周的学习,对于TensorFlow有了个简单的认识,github上的项目是:https://github.com/zhuanxuhit/nd101 ,欢迎关注的。
我们知道创建一个神经网络的一般步骤是:
- normalization
- learning hyperparameters
- initializing weights
- forward propagation
- caculate error
- backpropagation
而上面步骤在TensorFlow中实现的时候,一般我们的步骤是:
- Define the graph of nodes and edges.
- Propagate(传播) values through the graph.
接着在我们实现miniflow的时候,我们会先来定义node和graph,然后再来实现 forward propagation 和 backpropagation
1. node
我们先来看node的概念,看个简单的神经网络:
上面的神经网络就是一个大的网络,每个node都有输入和输出,每个node根据输入都会计算出输出,因此我们先来定义node:
class Node(object):
def __init__(self, inbound_nodes=[]):
self.inbound_nodes = inbound_nodes
self.outbound_nodes = []
for n in self.inbound_nodes:
n.outbound_nodes.append(self)
self.value = None
有了最简单的node,下一步就是来实现 forward propagation。
Forward propagation
为了计算一个node,需要知道它的输入,而输入又依赖于其他节点的输出,这种为了计算当前节点而求其所有前置节点的技术叫拓扑排序topological sort
用图来表示就如下图:
上面为了计算最后的Node F,我们给出了一个可行的计算顺序,我们此处直接给出一个算法:Kahn's Algorithm,代码如下:
def topological_sort(feed_dict):
input_nodes = [n for n in feed_dict.keys()]
G = {}
nodes = [n for n in input_nodes]
while len(nodes) > 0:
n = nodes.pop(0)
if n not in G:
G[n] = {'in': set(), 'out': set()}
for m in n.outbound_nodes:
if m not in G:
G[m] = {'in': set(), 'out': set()}
G[n]['out'].add(m)
G[m]['in'].add(n)
nodes.append(m)
L = []
S = set(input_nodes)
while len(S) > 0:
n = S.pop()
if isinstance(n, Input):
n.value = feed_dict[n]
L.append(n)
for m in n.outbound_nodes:
G[n]['out'].remove(m)
G[m]['in'].remove(n)
# if no other incoming edges add to S
if len(G[m]['in']) == 0:
S.add(m)
return L
def forward_pass(output_node, sorted_nodes):
for n in sorted_nodes:
n.forward()
return output_node.value
下面我们来实现一些简单的Node类型,第一个是Input类型:
class Input(Node):
def __init__(self):
Node.__init__(self)
def forward(self, value=None):
if value is not None:
self.value = value
下面是Mul类型:
class Mul(Node):
def __init__(self, *inputs):
Node.__init__(self, inputs)
def forward(self):
sum = 1.0
for n in self.inbound_nodes:
sum *= n.value
self.value = sum
具体的用法如下:
x, y, z = Input(), Input(), Input()
f = Mul(x, y, z)
feed_dict = {x: 4, y: 5, z: 10}
graph = topological_sort(feed_dict)
output = forward_pass(f, graph)
# should output 19
print("{} * {} * {} = {} (according to miniflow)".format(feed_dict[x], feed_dict[y], feed_dict[z], output))
4 * 5 * 10 = 200.0 (according to miniflow)
下面我们来实现下稍微复杂点的Node类型:Linear Node
class Linear(Node):
def __init__(self, inputs, weights, bias):
Node.__init__(self, [inputs, weights, bias])
def forward(self):
inputs = self.inbound_nodes[0].value
weights = self.inbound_nodes[1].value
bias = self.inbound_nodes[2].value
sum = 0
for i in range(len(inputs)):
sum += inputs[i] * weights[i]
self.value = sum + bias
有了LinearNode,我们就可以进行下面的计算了:
inputs, weights, bias = Input(), Input(), Input()
f = Linear(inputs, weights, bias)
feed_dict = {
inputs: [6, 20, 4],
weights: [0.5, 0.25, 1.5],
bias: 2
}
graph = topological_sort(feed_dict)
output = forward_pass(f, graph)
print(output)
16.0
有了LinearNode,我们还可以再定义sigmoidNode。
class Sigmoid(Node):
def __init__(self, node):
Node.__init__(self, [node])
def _sigmoid(self, x):
return 1. / (1. + np.exp(-x))
def forward(self):
input_value = self.inbound_nodes[0].value
self.value = self._sigmoid(input_value)
定义完node,我们下一步就是来看怎么定义输出好坏的标准了。
2. 定义cost函数
我们在训练神经网络的时候,需要有个目标,就是尽可能的让输出准确,怎么衡量呢?我们可以通过均方误差 (MSE)来衡量,这也可以用一个MSENode来建模
class MSE(Node):
def __init__(self, y, a):
Node.__init__(self, [y, a])
def forward(self):
y = self.inbound_nodes[0].value.reshape(-1, 1)
a = self.inbound_nodes[1].value.reshape(-1, 1)
# TODO: your code here
m = len(y)
sum = 0.
for (yi,ai) in zip(y,a):
sum += np.square(yi-ai)
self.value = sum / m
3. 定义反向传播
现在我们有了衡量输出好坏的函数,我们需要的是怎么能快速的让输出尽可能的好,这就要引出Gradient Descent,梯度即slope斜率,我们通过它来定义我们优化的方向,更详细的可以看文章停下来思考下神经网络
有了梯度的概念后,我们来看一个神经网络图:
上面我们为了计算MESE对于w1的梯度,我们沿着图中的红色线走,给出了梯度的计算方式,这种计算方式就是微积分中的链式法则,能让我们计算任意一个变量的梯度,下面我们给出梯度的计算代码,相比较之前的Node中,多了一个backward函数,看下面的实现:
import numpy as np
class Node(object):
def __init__(self, inbound_nodes=[]):
self.inbound_nodes = inbound_nodes
self.value = None
self.outbound_nodes = []
self.gradients = {}
for node in inbound_nodes:
node.outbound_nodes.append(self)
def forward(self):
raise NotImplementedError
def backward(self):
raise NotImplementedError
class Input(Node):
def __init__(self):
Node.__init__(self)
def forward(self):
pass
def backward(self):
self.gradients = {self: 0}
# 输入节点的梯度等于所有输出的梯度相加
for n in self.outbound_nodes:
grad_cost = n.gradients[self]
self.gradients[self] += grad_cost * 1
class Linear(Node):
def __init__(self, X, W, b):
Node.__init__(self, [X, W, b])
def forward(self):
X = self.inbound_nodes[0].value
W = self.inbound_nodes[1].value
b = self.inbound_nodes[2].value
X = self.inbound_nodes[0].value
W = self.inbound_nodes[1].value
b = self.inbound_nodes[2].value
self.value = np.dot(X, W) + b
def backward(self):
self.gradients = {n: np.zeros_like(n.value) for n in self.inbound_nodes}
for n in self.outbound_nodes:
grad_cost = n.gradients[self]
# y = XW + b
# 分别计算y相对于每个输入节点的梯度
# delta_x = w
self.gradients[self.inbound_nodes[0]] += np.dot(grad_cost, self.inbound_nodes[1].value.T)
# delta_w = x
self.gradients[self.inbound_nodes[1]] += np.dot(self.inbound_nodes[0].value.T, grad_cost)
# delta_b = 1
self.gradients[self.inbound_nodes[2]] += np.sum(grad_cost, axis=0, keepdims=False)
class Sigmoid(Node):
def __init__(self, node):
# The base class constructor.
Node.__init__(self, [node])
def _sigmoid(self, x):
return 1. / (1. + np.exp(-x))
def forward(self):
input_value = self.inbound_nodes[0].value
self.value = self._sigmoid(input_value)
def backward(self):
# Initialize the gradients to 0.
self.gradients = {n: np.zeros_like(n.value) for n in self.inbound_nodes}
for n in self.outbound_nodes:
# Get the partial of the cost with respect to this node.
grad_cost = n.gradients[self]
sigmoid = self.value
self.gradients[self.inbound_nodes[0]] = sigmoid * (1-sigmoid) * grad_cost
class MSE(Node):
def __init__(self, y, a):
# Call the base class' constructor.
Node.__init__(self, [y, a])
def forward(self):
y = self.inbound_nodes[0].value.reshape(-1, 1)
a = self.inbound_nodes[1].value.reshape(-1, 1)
self.m = self.inbound_nodes[0].value.shape[0]
self.diff = y - a
self.value = np.mean(self.diff**2)
def backward(self):
self.gradients[self.inbound_nodes[0]] = (2 / self.m) * self.diff
self.gradients[self.inbound_nodes[1]] = (-2 / self.m) * self.diff
def topological_sort(feed_dict):
input_nodes = [n for n in feed_dict.keys()]
G = {}
nodes = [n for n in input_nodes]
while len(nodes) > 0:
n = nodes.pop(0)
if n not in G:
G[n] = {'in': set(), 'out': set()}
for m in n.outbound_nodes:
if m not in G:
G[m] = {'in': set(), 'out': set()}
G[n]['out'].add(m)
G[m]['in'].add(n)
nodes.append(m)
L = []
S = set(input_nodes)
while len(S) > 0:
n = S.pop()
if isinstance(n, Input):
n.value = feed_dict[n]
L.append(n)
for m in n.outbound_nodes:
G[n]['out'].remove(m)
G[m]['in'].remove(n)
# if no other incoming edges add to S
if len(G[m]['in']) == 0:
S.add(m)
return L
def forward_and_backward(graph):
# Forward pass
for n in graph:
n.forward()
# Backward pass
# see: https://docs.python.org/2.3/whatsnew/section-slices.html
for n in graph[::-1]:
n.backward()
上面定义了所有需要的节点和函数,根据上面我们就可以得出下面的方法了:
X, W, b = Input(), Input(), Input()
y = Input()
f = Linear(X, W, b)
a = Sigmoid(f)
cost = MSE(y, a)
X_ = np.array([[-1., -2.], [-1, -2]])
W_ = np.array([[2.], [3.]])
b_ = np.array([-3.])
y_ = np.array([1, 2])
feed_dict = {
X: X_,
y: y_,
W: W_,
b: b_,
}
graph = topological_sort(feed_dict)
forward_and_backward(graph)
# return the gradients for each Input
gradients = [t.gradients[t] for t in [X, y, W, b]]
print(gradients)
[array([[ -3.34017280e-05, -5.01025919e-05],
[ -6.68040138e-05, -1.00206021e-04]]), array([[ 0.9999833],
[ 1.9999833]]), array([[ 5.01028709e-05],
[ 1.00205742e-04]]), array([ -5.01028709e-05])]
## 4. 随机梯度下降(Stochastic Gradient Descent)
以前一直没明白SGD是什么,最近才知道。
我们来看如果我们每次对全量数据都计算gradient后再去更新参数,我们可能会出现内存不够的情况,
因此我们的一个策略是:从全量中选出一部分数据,计算这些数据后就更新参数
因此我们就有了下面的代码:
def sgd_update(trainables, learning_rate=1e-2):
for n in trainables:
n.value -= learning_rate * n.gradients[n]
from sklearn.datasets import load_boston
from sklearn.utils import shuffle, resample
# Load data
data = load_boston()
X_ = data['data']
y_ = data['target']
# Normalize data
X_ = (X_ - np.mean(X_, axis=0)) / np.std(X_, axis=0)
n_features = X_.shape[1]
n_hidden = 10
W1_ = np.random.randn(n_features, n_hidden)
b1_ = np.zeros(n_hidden)
W2_ = np.random.randn(n_hidden, 1)
b2_ = np.zeros(1)
# Neural network
X, y = Input(), Input()
W1, b1 = Input(), Input()
W2, b2 = Input(), Input()
l1 = Linear(X, W1, b1)
s1 = Sigmoid(l1)
l2 = Linear(s1, W2, b2)
cost = MSE(y, l2)
feed_dict = {
X: X_,
y: y_,
W1: W1_,
b1: b1_,
W2: W2_,
b2: b2_
}
epochs = 10
# Total number of examples
m = X_.shape[0]
batch_size = 11
steps_per_epoch = m // batch_size
graph = topological_sort(feed_dict)
trainables = [W1, b1, W2, b2]
print("Total number of examples = {}".format(m))
# Step 4
for i in range(epochs):
loss = 0
for j in range(steps_per_epoch):
# Step 1
# Randomly sample a batch of examples
X_batch, y_batch = resample(X_, y_, n_samples=batch_size)
# Reset value of X and y Inputs
X.value = X_batch
y.value = y_batch
# Step 2
forward_and_backward(graph)
# Step 3
sgd_update(trainables)
loss += graph[-1].value
print("Epoch: {}, Loss: {:.3f}".format(i+1, loss/steps_per_epoch))
Total number of examples = 506
Epoch: 1, Loss: 133.910
Epoch: 2, Loss: 36.332
Epoch: 3, Loss: 22.353
Epoch: 4, Loss: 26.704
Epoch: 5, Loss: 23.121
Epoch: 6, Loss: 23.491
Epoch: 7, Loss: 21.393
Epoch: 8, Loss: 15.300
Epoch: 9, Loss: 13.391
Epoch: 10, Loss: 15.651
总结
以上就是我们miniflow的全部了,我们先是定义Node,然后定义Node之间的关系得到图,再通过forward propagation计算输出,通过MES来衡量输出好坏,通过链式法则计算梯度来更新参数让cost不断缩小,最后通过SGD来加快计算。