009 Reentrantlock源码 | AQS

AQS 全称 AbstractQueuedSynchronizer,靠着开局一个int state和一个双端FIFO的Node队列,实现抽象的队列式的同步器。AQS定义了一套多线程访问共享资源的同步器框架,许多同步类实现都依赖于它,如常用的ReentrantLock/Semaphore/CountDownLatch。

Node类如下,

static final class Node {

    static final Node SHARED = new Node();
    static final Node EXCLUSIVE = null;
    static final int CANCELLED =  1;
    static final int SIGNAL    = -1;
    static final int CONDITION = -2;
    static final int PROPAGATE = -3;
    volatile int waitStatus;

        //队列前后
    volatile Node prev;
    volatile Node next;

    //节点对应的线程
    volatile Thread thread;

    
    Node nextWaiter;

    final boolean isShared() {
        return nextWaiter == SHARED;
    }

    final Node predecessor() throws NullPointerException {
        Node p = prev;
        if (p == null)
            throw new NullPointerException();
        else
            return p;
    }

    Node() {    // Used to establish initial head or SHARED marker
    }

    Node(Thread thread, Node mode) {     // Used by addWaiter
        this.nextWaiter = mode;
        this.thread = thread;
    }

    Node(Thread thread, int waitStatus) { // Used by Condition
        this.waitStatus = waitStatus;
        this.thread = thread;
    }
}

对外需要重写的方法,如果没有重写,使用的话,会抛异常

//获得锁
protected boolean tryAcquire(int arg) {
    throw new UnsupportedOperationException();
}

//释放锁
protected boolean tryRelease(int arg) {
    throw new UnsupportedOperationException();
}


protected int tryAcquireShared(int arg) {
    throw new UnsupportedOperationException();
}


protected boolean tryReleaseShared(int arg) {
    throw new UnsupportedOperationException();
}

//当前线程是否持有锁
protected boolean isHeldExclusively() {
    throw new UnsupportedOperationException();
}

公开使用的方法如下,这里列出我们重点说明的

public final void acquire(int arg) {
    if (!tryAcquire(arg) &&
        acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
        selfInterrupt();
}


public final boolean release(int arg) {
    if (tryRelease(arg)) {
        Node h = head;
        if (h != null && h.waitStatus != 0)
            unparkSuccessor(h);
        return true;
    }
    return false;
}

从上述protected和public的方法,可以看到,acquire方法需要调用用户重写的tryAcquire方法,根据tryAcquire返回值,决定下一步操作,release方法同理。

我们结合Reentrantlock的实现来讲解,

Reentrantlock | Sync

代码如下,删除不重要的

abstract static class Sync extends AbstractQueuedSynchronizer {

    abstract void lock(); //定义统一的抽象lock方法,等待实现
        
       //定义非公平锁的获取
    final boolean nonfairTryAcquire(int acquires) {
          //当前线程
        final Thread current = Thread.currentThread();
        int c = getState(); 
        if (c == 0) { //没有任何锁,非0表示锁已经被占
            if (compareAndSetState(0, acquires)) { //CAS竞争获得锁
                setExclusiveOwnerThread(current); //竞争后设置锁的持有线程
                return true;//返回
            }
        }
        else if (current == getExclusiveOwnerThread()) { //锁的可重入设置
            int nextc = c + acquires;
            if (nextc < 0) // 
                throw new Error("Maximum lock count exceeded");
            setState(nextc); //重入次数累加
            return true;
        }
        return false;
    }
        //锁释放
    protected final boolean tryRelease(int releases) {
        int c = getState() - releases;  //重入次数减去
        if (Thread.currentThread() != getExclusiveOwnerThread()) //当前锁持有线程判断
            throw new IllegalMonitorStateException();
        boolean free = false;
        if (c == 0) { //如果当前重入次数为0,锁释放,返回true,表示已经释放锁。
            free = true;
            setExclusiveOwnerThread(null); //清空持有线程
        }
        setState(c); 
        return free; //否则,返回false,没有释放锁
    }

    protected final boolean isHeldExclusively() {
        return getExclusiveOwnerThread() == Thread.currentThread();
    }
}

从代码上可以看出来,sync玩的是aqs的state而已,并没有涉及到fifo队列,而且,上述代码和我们自定义的可重入锁大同小异。

Reentrantlock | NonfairSync

代码如下,

static final class NonfairSync extends Sync {
    //实现Sync的lock方法
    final void lock() {
        if (compareAndSetState(0, 1)) //直接cas一下,如果获得到锁,说明当前没有锁,不需阻塞
            setExclusiveOwnerThread(Thread.currentThread()); //设置持有线程
        else
            acquire(1); //调用aqs的acquire,进而调用下面的tryAcquire
    }

    protected final boolean tryAcquire(int acquires) {
        return nonfairTryAcquire(acquires); //调用nonfairTryAcquire
    }
}

Sync生成对象sync

Reentrantlock使用sync的acquire和realse方法(来自aqs),实现获取锁和释放锁,

public void lock() {
        sync.lock(); //后者是非公平的Sync,或者是公平的Sync
 }

 public void unlock() {
        sync.release(1);
 }

所以,重点指向aqs的acquire和release方法。再贴一下code。

acquire

public final void acquire(int arg) {
    if (!tryAcquire(arg) && //如果tryAcquire放回true,表示获得到锁,退出if,否则表示没有得到
       //锁,进入阻塞队列,执行if条件 &&后面的语句
        acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
        selfInterrupt();
}

addWaiter方法

 private Node addWaiter(Node mode) {
        Node node = new Node(Thread.currentThread(), mode); //包装Node
        Node pred = tail;
        if (pred != null) { //插入队尾
            node.prev = pred;
            if (compareAndSetTail(pred, node)) {
                pred.next = node;
                return node;
            }
        }
        enq(node); //如果执行到此,说明上面快速插入队列尾部失败,毕竟是cas方式,这里enq通过
      //无限循环实现cas方式插入队列尾部
        return node;
    }

 private Node enq(final Node node) {
        for (;;) {
            Node t = tail;
            if (t == null) { // Must initialize
                if (compareAndSetHead(new Node()))
                    tail = head;
            } else {
                node.prev = t;
                if (compareAndSetTail(t, node)) {
                    t.next = node;
                    return t;
                }
            }
        }
    }

acquireQueued方法,

 final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) { //循环,死磕
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) { //直到这个时候退出,
                  //即,节点node的前一个节点是head且如果成功获得锁,如果没有获得锁,下次循环继续,继续阻塞在队里中。
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return interrupted; // head后移后,当前节点从队列移除,返回
                }
                //如果没有退出for循环,干什么?死磕当前节点的前一个节点,
                //当前一个节点都在等待信号signal的时候,当前节点如何操作?继续等待!!!
                if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

//查看当前节点的前节点是否是signal,顺便清空下无效的节点
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
    int ws = pred.waitStatus;
    if (ws == Node.SIGNAL) //只要前一个节点是signal,则返回
        return true;
    if (ws > 0) { //清理状态无用的节点
        do {
            node.prev = pred = pred.prev;
        } while (pred.waitStatus > 0);
        pred.next = node;
    } else {
        compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
    }
    return false;
}

//继续等待,返回是否中断
  private final boolean parkAndCheckInterrupt() {
        LockSupport.park(this);
        return Thread.interrupted();
    }

release

代码如下,

public final boolean release(int arg) {
        if (tryRelease(arg)) { 
        //如果重写的tryRelease方法返回true,表明释放锁了
            Node h = head;
            if (h != null && h.waitStatus != 0)
                unparkSuccessor(h);
               //唤醒successor,即,唤醒head的successor后继者,
            return true;
        }
       //如果在这里,说明没有释放锁,返回true
        return false;
}

private void unparkSuccessor(Node node) {

    int ws = node.waitStatus;
    if (ws < 0)
        compareAndSetWaitStatus(node, ws, 0);//设置当前Node状态为0

    Node s = node.next;
    if (s == null || s.waitStatus > 0) {
        s = null;
          // 如果当前Node的下一个节点符合状态就直接进行唤醒,
         // 否则从队尾开始进行倒序查找,找到最优先的线程进行唤醒
        for (Node t = tail; t != null && t != node; t = t.prev)
            if (t.waitStatus <= 0)
                s = t;
    }
      //寻找下一个等待线程节点来唤醒等待线程并通过LockSupport.unpark()唤醒线程
    if (s != null)
        LockSupport.unpark(s.thread);
}

Reentrantlock | FairSync

公平的锁,保证了阻塞的线程唤醒后,能够获得到锁,而不是被新的线程抢占。和非公平的锁唯一区别在ReentrantLock中的部分,会根据情况判断是否阻塞当前的线程

protected final boolean tryAcquire(int acquires) {
    final Thread current = Thread.currentThread();
    int c = getState();
    if (c == 0) {
             //hasQueuedPredecessors是关键,他的作用在于,对于新来的线程,
            //不让其抢占锁,而是直接进入到阻塞队列中等待
        if (!hasQueuedPredecessors() &&
            compareAndSetState(0, acquires)) {
            setExclusiveOwnerThread(current);
            return true;
        }
    }
    else if (current == getExclusiveOwnerThread()) {
        int nextc = c + acquires;
        if (nextc < 0)
            throw new Error("Maximum lock count exceeded");
        setState(nextc);
        return true;
    }
    return false;
}

// 当前线程不为空,并且阻塞的线程不是当前线程(非重入)
public final boolean hasQueuedPredecessors() {
    Node t = tail; 
    Node h = head;
    Node s;
    return h != t && 
        ((s = h.next) == null || s.thread != Thread.currentThread()); //
}

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342