Elastic读写原理
-
es写数据过程
客户端选择一个 node 发送请求过去,这个 node 就是 coordinating node(协调节点)。
coordinating node 对 document 进行路由,将请求转发给对应的 node(有 primary shard)。
实际的 node 上的 primary shard 处理请求,然后将数据同步到 replica node。
coordinating node 如果发现 primary node 和所有 replica node 都搞定之后,就返回响应结果给客户端。
写入示意图
-
es 读数据过程
客户端发送请求到任意一个 node,成为 coordinate node。
coordinate node 对 doc id 进行哈希路由,将请求转发到对应的 node,此时会使用 round-robin随机轮询算法,在 primary shard 以及其所有 replica 中随机选择一个,让读请求负载均衡。
接收请求的 node 返回 document 给 coordinate node。
coordinate node 返回 document 给客户端。
-
es 搜索数据过程
es 最强大的是做全文检索,就是比如你有三条数据:
java真好玩儿啊 java好难学啊 j2ee特别牛 你根据 "java" 关键词来搜索,将包含 java的 document 给搜索出来。es 就会给你返回:java真好玩儿啊,java好难学啊。
客户端发送请求到一个 coordinate node。
协调节点将搜索请求转发到所有的 shard 对应的 primary shard 或 replica shard,都可以。
query phase:每个 shard 将自己的搜索结果(其实就是一些 doc id)返回给协调节点,由协调节点进行数据的合并、排序、分页等操作,产出最终结果。
fetch phase:接着由协调节点根据 doc id 去各个节点上拉取实际的 document 数据,最终返回给客户端。
写请求是写入 primary shard,然后同步给所有的 replica shard;读请求可以从 primary shard 或 replica shard 读取,采用的是随机轮询算法。
-
es写数据底层原理
- 数据先写入内存 buffer,在 buffer 里的时候数据是搜索不到的;同时将数据写入 translog 日志文件。如果 buffer 快满了,或者到一定时间,就会将内存 buffer 数据 refresh 到一个新的 segment file 中,但是此时数据不是直接进入 segment file 磁盘文件,而是先进入 os cache 。这个过程就是 refresh。
- 每隔 1 秒钟,es 将 buffer 中的数据写入一个新的 segment file,每秒钟会产生一个新的磁盘文件 segment file,这个 segment file 中就存储最近 1 秒内 buffer 中写入的数据。但是如果 buffer 里面此时没有数据,那当然不会执行 refresh 操作,如果 buffer 里面有数据,默认 1 秒钟执行一次 refresh 操作,刷入一个新的 segment file 中。
- 操作系统里面,磁盘文件其实都有一个东西,叫做 os cache,即操作系统缓存,就是说数据写入磁盘文件之前,会先进入 os cache,先进入操作系统级别的一个内存缓存中去。只要 buffer中的数据被 refresh 操作刷入 os cache中,这个数据就可以被搜索到了。
- 为什么叫 es 是准实时的? NRT,全称 near real-time。默认是每隔 1 秒 refresh 一次的,所以 es 是准实时的,因为写入的数据 1 秒之后才能被看到。可以通过 es 的 restful api 或者 java api,手动执行一次 refresh 操作,就是手动将 buffer 中的数据刷入 os cache中,让数据立马就可以被搜索到。只要数据被输入 os cache 中,buffer 就会被清空了,因为不需要保留 buffer 了,数据在 translog 里面已经持久化到磁盘去一份了。重复上面的步骤,新的数据不断进入 buffer 和 translog,不断将 buffer 数据写入一个又一个新的 segment file 中去,每次 refresh 完 buffer 清空,translog 保留。随着这个过程推进,translog 会变得越来越大。当 translog 达到一定长度的时候,就会触发 commit 操作。
- commit 操作发生第一步,就是将 buffer 中现有数据 refresh 到 os cache 中去,清空 buffer。然后,将一个 commit point写入磁盘文件,里面标识着这个 commit point 对应的所有 segment file,同时强行将 os cache 中目前所有的数据都 fsync 到磁盘文件中去。最后清空 现有 translog 日志文件,重启一个 translog,此时 commit 操作完成。
- 这个 commit 操作叫做 flush。默认 30 分钟自动执行一次 flush,但如果 translog 过大,也会触发 flush。flush 操作就对应着 commit 的全过程,我们可以通过 es api,手动执行 flush 操作,手动将 os cache 中的数据 fsync 强刷到磁盘上去。
- translog 日志文件的作用是什么?你执行 commit 操作之前,数据要么是停留在 buffer 中,要么是停留在 os cache 中,无论是 buffer 还是 os cache 都是内存,一旦这台机器死了,内存中的数据就全丢了。所以需要将数据对应的操作写入一个专门的日志文件 translog 中,一旦此时机器宕机,再次重启的时候,es 会自动读取 translog 日志文件中的数据,恢复到内存 buffer 和 os cache 中去。
- translog 其实也是先写入 os cache 的,默认每隔 5 秒刷一次到磁盘中去,所以默认情况下,可能有 5 秒的数据会仅仅停留在 buffer 或者 translog 文件的 os cache 中,如果此时机器挂了,会丢失 5 秒钟的数据。但是这样性能比较好,最多丢 5 秒的数据。也可以将 translog 设置成每次写操作必须是直接 fsync 到磁盘,但是性能会差很多。
其实 es 第一是准实时的,数据写入 1 秒后可以搜索到;可能会丢失数据的。有 5 秒的数据,停留在 buffer、translog os cache、segment file os cache 中,而不在磁盘上,此时如果宕机,会导致 5 秒的数据丢失。
总结一下,数据先写入内存 buffer,然后每隔 1s,将数据 refresh 到 os cache,到了 os cache 数据就能被搜索到(所以我们才说 es 从写入到能被搜索到,中间有 1s 的延迟)。每隔 5s,将数据写入 translog 文件(这样如果机器宕机,内存数据全没,最多会有 5s 的数据丢失),translog 大到一定程度,或者默认每隔 30mins,会触发 commit 操作,将缓冲区的数据都 flush 到 segment file 磁盘文件中。
数据写入 segment file 之后,同时就建立好了倒排索引。
-
删除/更新数据底层原理
- 如果是删除操作,commit 的时候会生成一个 .del 文件,里面将某个 doc 标识为 deleted 状态,那么搜索的时候根据 .del 文件就知道这个 doc 是否被删除了。
- 如果是更新操作,就是将原来的 doc 标识为 deleted 状态,然后新写入一条数据。
- buffer 每 refresh 一次,就会产生一个 segment file,所以默认情况下是 1 秒钟一个 segment file,这样下来 segment file 会越来越多,此时会定期执行 merge。每次 merge 的时候,会将多个 segment file 合并成一个,同时这里会将标识为 deleted 的 doc 给物理删除掉,然后将新的 segment file 写入磁盘,这里会写一个 commit point,标识所有新的 segment file,然后打开 segment file 供搜索使用,同时删除旧的 segment file。