为啥不是Smith方图

14020199044刘发强

嵌牛导读

本文重点分析了Smith圆图的设计思想尤其是选择反射系数为基底的必要性,并通过构建以阻抗为基底的“方图”在参数套覆、特殊点、基本操作等方面与圆图进行了全面比较并分析了内在联系,深入阐释了图解思想的本质。

嵌牛鼻子

Smith圆图;阻抗匹配;

嵌牛提问

Smith圆图在计算机处理能力极高的今天有没有存在的必要?

嵌牛正文

Smith圆图的基本思想

1、归一化思想

为了去除电路特性阻抗、工作频率的影响而实现通用性,在使用Smith圆图处理之前,进行阻抗归一化和电长度归一化,所以Smith圆图面向标准的阻抗和电尺寸,而不是实际阻抗和物理尺寸。在完成解算之后,要进行相应的反归一化。

2、以某个工作参数作为基底,套覆其他参数。在smith本人设计图形时选择了以反射系数为基底,套覆阻抗、导纳、驻波比等参数。下面详细解释这样做的原因。

因为反射系数模值小于等于1,所以以反射系数为基底可以在有界区域处理所有的可能电路状态。而且可以同时套覆阻抗和导纳这两个对偶参量,且具有极好的对称性。

否则,例如如果以阻抗为基底作图,下面详细讨论这种方案的构建过程:

(1)阻抗、导纳套覆:等电阻线、等电导线是平行于纵轴的直线,等电抗线等电纳线是平行于横轴的直线。

即或

即在阻抗平面上,和是反演的。因此可以通过反演变换互相求算。

(2)驻波比套覆:驻波比决定于反射系数模值,下面推导等反射系数模值曲线,推导涉及变量均为归一化量。

将代入上式并化为标准形式得

可见以阻抗为基底作图,等反射系数模值曲线依然是圆,但其圆心为,半径为,其中。

(3)特殊点

完全匹配时,匹配点为;当完全失配时,此时的圆退化为即纵轴(纯电抗)。短路点为原点,开路点为无穷远点。由于电阻非负,所以阻抗平面实际为右半平面,第一象限为感性,第四象限为容性,此图略方,是为“方图”。

(4)基本操作

串联集总电感,垂直上移,串联集总电容,垂直下移;进行并联操作时,要先对反演得到,再在相应的等电导线上移动,并联集总电感,垂直下移,并联集总电容,垂直上移;在无耗传输线上沿线移动时,即在图上沿等反射系数模值圆移动,顺时针向电源,逆时针向负载(负载短路时,可见向电源移动即增大时电抗从负无穷增大到正无穷,周期性往复,相应于阻抗沿纵轴由下至上扫略,也就是顺时针,这可类推到一般负载的情形)。

(5)阻抗匹配

与Smith圆图类似,基于基本操作,通过串并集总电感,电容,开、短路枝节或串联一定电长度的传输线来实现阻抗匹配。

“方图”和圆图的比较

Smith圆图所有电路状态都被约束在反射系数平面的单位圆内,而“方图”是无界的右半平面,二者的本质联系是

反射系数与归一化阻抗之间是双线性映射关系,该映射将归一化阻抗的右半平面映射为反射系数平面的单位圆内。核心差别是一个有界,一个无界。

优缺点比较

(1)“方图”无界,显然有限的图幅不能完全展示,这是其致命缺陷,也是不选择阻抗为基底作图的根本原因之一。

(2)阻抗与导纳的互相转换,在圆图中,阻抗和导纳关于原点中心对称,作图转换容易。但在“方图”中,阻抗和导纳关系为反演变换或共轭圆对称,不利于作图求解,这是“方图”的另一根本缺陷。

(3)基本操作方面,尤其是串并感性或容性元件时,“方图”操作为沿平行于纵轴的直线移动,这是一个鸡肋的优点。

(4)参数套覆方面,就反射系数、驻波比而言并无多大差别。但阻抗和导纳是对偶的参量,在圆图中以反射系数为基底,套覆两者是平权的,但在“方图”中以阻抗或以导纳为基底则打破了这种平权性,并对另一个参量的套覆造成困难。

综上,应以反射系数为基底套覆其他参量

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,214评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,307评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,543评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,221评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,224评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,007评论 1 284
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,313评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,956评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,441评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,925评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,018评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,685评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,234评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,240评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,464评论 1 261
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,467评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,762评论 2 345

推荐阅读更多精彩内容